早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+k经过点A,其顶点为B,另一抛物线y=(x-h)2+2-h(h>1)的顶点为D,两抛物线相交于点C.(1)求点B的坐标,并说明点D在直线l

题目详情
如图1,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1) 2 +k经过点A,其顶点为B,另一抛物线y=(x-h) 2 +2-h(h>1)的顶点为D,两抛物线相交于点C.
(1)求点B的坐标,并说明点D在直线l上的理由;
(2)设交点C的横坐标为m.
①交点C的纵坐标可以表示为:______或______,由此进一步探究m关于h的函数关系式;
②如图2,若∠ACD=90°,求m的值.
▼优质解答
答案和解析
(1)当x=0时候,y=-x+2=2,
∴A(0,2),
把A(0,2)代入y=(x-1) 2 +k,得1+k=2
∴k=1,
∴y=(x-1) 2 +1,
∴B(1,1)
∵D(h,2-h)
∴当x=h时,y=-x+2=-h+2=2-h
∴点D在直线l上;

(2)①(m-1) 2 +1或(m-h) 2 -h+2
由题意得(m-1) 2 +1=(m-h) 2 -h+2,
整理得2mh-2m=h 2 -h
∵h>1
∴m=
h 2 -h
2h-2
=
h
2

②过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F
∵∠ACD=90°,
∴∠ACE=∠CDF
又∵∠AEC=∠DFC
∴△ACE ∽ △CDF
AE
EC
=
CF
DF

又∵C(m,m 2 -2m+2),D(2m,2-2m),
∴AE=m 2 -2m,DF=m 2 ,CE=CF=m
m 2 -2m
m
=
m
m 2

∴m 2 -2m=1
解得:m=±
2
+1
∵h>1
∴m=
h
2
1
2

∴m=
2
+1