早教吧作业答案频道 -->数学-->
三角形ABC的内甪A,B,C的对边分别为a,b,C,已知a=bcosC十csinB.(1)求B(2)求三角形ABC面积的最大值
题目详情
三角形ABC的内甪A,B,C的对边分别为a,b,C,已知a=bcosC十csinB.(1)求B
(2)求三角形ABC面积的最大值
(2)求三角形ABC面积的最大值
▼优质解答
答案和解析
(1)
利用正弦定理:a/sinA=b/sinB=c/sinC
∵ a=bcosC+csinB
∴ sinA=sinBcosC+sinCsinB
∵ sinA=sin[π-(B+C)]=sin(B+C)
∴ sinBcosC+cosCsinB=sinBcosC+sinCsinB
∴ cosCsinB=sinCsinB
∴ tanB=1
∴ B=π/4
(2)
S=(1/2)acsinB=(√2/4)ac
利用余弦定理
4=a²+c²-2ac*cos(π/4)
∴ 4=a²+c²-√2ac≥2ac-√2ac
∴ ac≤4/(2+√2)=2(2+√2)
当且仅当a=c时等号成立
∴ S的最大值是(√2/4)*2*(2+√2)=√2+1
利用正弦定理:a/sinA=b/sinB=c/sinC
∵ a=bcosC+csinB
∴ sinA=sinBcosC+sinCsinB
∵ sinA=sin[π-(B+C)]=sin(B+C)
∴ sinBcosC+cosCsinB=sinBcosC+sinCsinB
∴ cosCsinB=sinCsinB
∴ tanB=1
∴ B=π/4
(2)
S=(1/2)acsinB=(√2/4)ac
利用余弦定理
4=a²+c²-2ac*cos(π/4)
∴ 4=a²+c²-√2ac≥2ac-√2ac
∴ ac≤4/(2+√2)=2(2+√2)
当且仅当a=c时等号成立
∴ S的最大值是(√2/4)*2*(2+√2)=√2+1
看了 三角形ABC的内甪A,B,C...的网友还看了以下:
已知丨a丨=8,丨b丨2,丨a-b丨=b-a,求b+a的值 2020-04-05 …
设集合A={x|x=a+根号2b,a,b属于z}(1)若m属于A,求证m平方属于A(2)已知x=3 2020-04-06 …
θ=arccos(a·b);已知θ,a,求b;怎么求?公式怎么写?如题 2020-04-27 …
已知A=(a,b,c),B=(x丨x属于A)求B,是求什么东西花括号和属于的符号不会打,求解 2020-05-13 …
已知三角形ABC的内角分别为abc,若根号3/3bsinA/2cosA/2+acos的平方B/2= 2020-05-14 …
几道分式方程某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价将公式x=a分之 2020-05-22 …
已知A=[1,b](b>1),对于函数f(x)=1/2(x-1)^2+1,当x∈A时,f(x)∈A 2020-06-03 …
高代矩阵证明(A-E)可逆及求B那位好心的师哥师姐帮帮忙,小弟感激不尽已知AB均为3阶方阵,AB- 2020-06-11 …
A.B为矩阵,满足A^-1*B*A=6*A+B*A,求B 2020-06-12 …
一、设a,b∈R,集合{1,a+b,a}={0,b/a,a²},求b-a二、集合X={x|x2n- 2020-06-27 …