早教吧作业答案频道 -->数学-->
在正方形ABCD中:(1)已知:如图①,点E、F分别在BC、CD上,且AE⊥BF,垂足为M,求证:AE=BF.(2)如图②,如果点E、F、G分别在BC、CD、DA上,且GE⊥BF,垂足M,那么GE、BF相等吗?证明你的结
题目详情
在正方形ABCD中:
(1)已知:如图①,点E、F分别在BC、CD上,且AE⊥BF,垂足为M,求证:AE=BF.
(2)如图②,如果点E、F、G分别在BC、CD、DA上,且GE⊥BF,垂足M,那么GE、BF相等吗?证明你的结论.
(3)如图③,如果点E、F、G、H分别在BC、CD、DA、AB上,且GE⊥HF,垂足M,那么GE、HF相等吗?证明你的结论.
(1)已知:如图①,点E、F分别在BC、CD上,且AE⊥BF,垂足为M,求证:AE=BF.
(2)如图②,如果点E、F、G分别在BC、CD、DA上,且GE⊥BF,垂足M,那么GE、BF相等吗?证明你的结论.
(3)如图③,如果点E、F、G、H分别在BC、CD、DA、AB上,且GE⊥HF,垂足M,那么GE、HF相等吗?证明你的结论.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是正方形,AE⊥BF,
∴∠BAE+∠ABM=90°,∠CBF+∠ABM=90°,
∴∠BAE=∠CBF,
∵在△ABE和△BCF中,
,
∴△ABE≌△BCF(AAS),
∴AE=BF;
(2)GE=BF.
证明:如图②,过点A作AN∥GE,
∵AD∥BC,
∴四边形ANEG是平行四边形,
∴AN=GE,
∵GE⊥BF,
∴AN⊥BF,
由(1)可得△ABN≌△BCF,
∴AN=BF,
∴GE=BF;
(3)GE=HF.
证明:如图③,分别过点A、B作AP∥GE,BQ∥HF,
∵AD∥BC,AB∥DC,
∴四边形APEG、四边形BQFH为平行四边形,
∴AP=GE,BQ=HF,
∵GE⊥HF,
∴AP⊥BQ,
由(1)可得△ABP≌△BCQ,
∴AP=BQ,
∴GE=HF.
∴∠BAE+∠ABM=90°,∠CBF+∠ABM=90°,
∴∠BAE=∠CBF,
∵在△ABE和△BCF中,
|
∴△ABE≌△BCF(AAS),
∴AE=BF;
(2)GE=BF.
证明:如图②,过点A作AN∥GE,
∵AD∥BC,
∴四边形ANEG是平行四边形,
∴AN=GE,
∵GE⊥BF,
∴AN⊥BF,
由(1)可得△ABN≌△BCF,
∴AN=BF,
∴GE=BF;
(3)GE=HF.
证明:如图③,分别过点A、B作AP∥GE,BQ∥HF,
∵AD∥BC,AB∥DC,
∴四边形APEG、四边形BQFH为平行四边形,
∴AP=GE,BQ=HF,
∵GE⊥HF,
∴AP⊥BQ,
由(1)可得△ABP≌△BCQ,
∴AP=BQ,
∴GE=HF.
看了 在正方形ABCD中:(1)已...的网友还看了以下:
阅读下列材料,回答问题.【材料1】乘积是1的两个数互为倒数,即ab与ba互为倒数,也就是说,a÷b 2020-05-17 …
如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四 2020-06-13 …
已知某正数的两个平方根分别是a+3和2a-15,b的立方根是-2.求-b-a的算术平方根. 2020-06-13 …
如图,三角形ABC中,点D是AB边的中点,点E是AC边上的一点,且AE=3EC,O为DC与BE的交 2020-06-19 …
如图是膝跳反射的示意图,请根据你所知道的回答第21~23小题:该反射的神经传导通路的顺序是()A. 2020-06-28 …
如图是膝跳反射的示意图,请根据你所知道的回答第37~40小题:该反射的神经传导通路的顺序是()A. 2020-06-28 …
如图为用10mL量筒量取液体时的实际情景(只画出片段).则所量取液体的体积应为()A.(b+0.1 2020-07-09 …
下图表示大陆漂移过程中不同时期海陆分布状况.根据大陆漂移学说,海陆分布变化的顺序是()A.a→b→ 2020-07-14 …
2(a-b)3-(b-a)2分解因式正确的是()A.(a-b)2(2a-2b+1)B.2(a-b) 2020-08-03 …
直线a,b,c及平面α,β,γ,下列命题正确的是()A.若aα,bα,c⊥a,c⊥b则c⊥αB.若b 2020-11-02 …