早教吧作业答案频道 -->数学-->
如图,已知AB⊥CB,垂足为B,CG⊥BC,垂足为C,∠BAH=∠GCF=30°,AD平分∠BAF,AE平分∠BAG.(1)求∠EAG的度数;(2)求证:HG∥CF;(3)试判断∠DAE与∠AFC之间的数量关系,并说明理由.
题目详情
如图,已知AB⊥CB,垂足为B,CG⊥BC,垂足为C,∠BAH=∠GCF=30°,AD平分∠BAF,AE平分∠BAG.
(1)求∠EAG的度数;
(2)求证:HG∥CF;
(3)试判断∠DAE与∠AFC之间的数量关系,并说明理由.
(1)求∠EAG的度数;
(2)求证:HG∥CF;
(3)试判断∠DAE与∠AFC之间的数量关系,并说明理由.
▼优质解答
答案和解析
(1)∵∠BAH=30°,
∴∠BAG=180°-30°=150°,
∵AE平分∠BAG,
∴∠EAG=
∠BAG=75°;
(2)∵AB⊥CB,垂足为B,CG⊥BC,垂足为C,
∴AB∥CG,
∴∠AGC=∠HAB=30°,
∵∠BAH=∠GCF=30°,
∴∠AGC=∠GCF,
∴HG∥CF;
(3)∠AFC=2∠DAE,
理由:设∠DAE=x,∠EAF=y,
∵AD平分∠BAF,AE平分∠BAG,
∴∠BAE=∠GAE,∠BAD=∠FAD=x+y,
∴x+y+x=y+∠GAF,
∴∠GAF=2x=2∠DAE,
∵HG∥CF,
∴∠AFC=∠GAF,
∴∠AFC=2∠DAE.
∴∠BAG=180°-30°=150°,
∵AE平分∠BAG,
∴∠EAG=
1 |
2 |
(2)∵AB⊥CB,垂足为B,CG⊥BC,垂足为C,
∴AB∥CG,
∴∠AGC=∠HAB=30°,
∵∠BAH=∠GCF=30°,
∴∠AGC=∠GCF,
∴HG∥CF;
(3)∠AFC=2∠DAE,
理由:设∠DAE=x,∠EAF=y,
∵AD平分∠BAF,AE平分∠BAG,
∴∠BAE=∠GAE,∠BAD=∠FAD=x+y,
∴x+y+x=y+∠GAF,
∴∠GAF=2x=2∠DAE,
∵HG∥CF,
∴∠AFC=∠GAF,
∴∠AFC=2∠DAE.
看了 如图,已知AB⊥CB,垂足为...的网友还看了以下:
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证,f(x)单调增加有连续导数,且f( 2020-06-15 …
f(x)在[0,1]连续,在(0,1)可导.f(0)=0,f(1)=1.证明存在两点a,b属于(f 2020-06-18 …
f(x)在[0,1]可导,f(x)满足f(0)=0,f(1)=1证明对任意的正数a,b,a/f'( 2020-07-16 …
证明方程x=asinx+b(a>0,b>0)至少有一个正根,并且不超过a+bf(x)在闭区间[0, 2020-07-20 …
f(x)在x=0的邻域有二阶连续导数,f'(0)=f''(0)=0,则在x=0处,f(x)f(x) 2020-07-29 …
f(x)在开区间(a,b)导数大于等于0,f(a)=0,为什么书上说f(x)在(a,b)上是大于0 2020-08-01 …
下列对应是否是从A到B的函数?①A=R,B={xIx>0},f:x→绝对值x②A=Z,B=N,f: 2020-08-03 …
设函数f(x)对任意函数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f 2020-12-08 …