早教吧作业答案频道 -->数学-->
点A(X1,Y1),B(X2,Y2)是抛物线C:X^2=2Y上的不同两点,过A,B分别作抛物线C的切线,两条切线交于点P(X0,Y0).1.证X0是X1与X2的等差中项(已会)2.若直线AB过定点M(0,1),求证:O是三角形PAB的垂心3.在2的条件
题目详情
点A(X1,Y1),B(X2,Y2)是抛物线C:X^2=2Y上的不同两点,过A,B分别作抛物线C的切线,两条切线交于点P(X0,Y0).
1.证X0是X1与X2的等差中项(已会)
2.若直线AB过定点M(0,1),求证:O是三角形PAB的垂心
3.在2的条件下,求三角形PAB的重心G的轨迹方程
1.证X0是X1与X2的等差中项(已会)
2.若直线AB过定点M(0,1),求证:O是三角形PAB的垂心
3.在2的条件下,求三角形PAB的重心G的轨迹方程
▼优质解答
答案和解析
我应该是做出来了.
第一问不用我证了
从第二问开始
设A坐标(x1,0.5x1方)B(x2,0.5x2方)
写出两条切线的方程求交点,P的坐标(x1+x2/2,0.5x1x2)
联立直线和抛物线方程用韦达定理求出x1x2=-2
用向量表示出OA和PB,作出向量内积,将x1x2=-2代入得内积为0所以OA垂直于PB.同理OB垂直于AP,两条垂直就能确定垂心,所以O是PAB的垂心,第二问证毕
第三问
设过AB直线的斜率为k,重心坐标重心公式得为(x1+x2/2,0.5x1方+0.5x2方-1/3)因为x1+x2=2k,x1x2=-2,代入得重心坐标为(k,(2k方+1)/3)
所以重心轨迹方程为y=(2x方+1)/3
这里很多东西没法写所以步骤比较简略,另外不知道你是高几,在高三这道题真不能算难题,还有我做题马虎,不一定能做对--__--!
第一问不用我证了
从第二问开始
设A坐标(x1,0.5x1方)B(x2,0.5x2方)
写出两条切线的方程求交点,P的坐标(x1+x2/2,0.5x1x2)
联立直线和抛物线方程用韦达定理求出x1x2=-2
用向量表示出OA和PB,作出向量内积,将x1x2=-2代入得内积为0所以OA垂直于PB.同理OB垂直于AP,两条垂直就能确定垂心,所以O是PAB的垂心,第二问证毕
第三问
设过AB直线的斜率为k,重心坐标重心公式得为(x1+x2/2,0.5x1方+0.5x2方-1/3)因为x1+x2=2k,x1x2=-2,代入得重心坐标为(k,(2k方+1)/3)
所以重心轨迹方程为y=(2x方+1)/3
这里很多东西没法写所以步骤比较简略,另外不知道你是高几,在高三这道题真不能算难题,还有我做题马虎,不一定能做对--__--!
看了 点A(X1,Y1),B(X2...的网友还看了以下:
过点P(2,1)作直线l分别与x轴、y轴交于点A、B,且使△AOB的面积为定值S(S>0),则这样 2020-05-16 …
(1+p)+(1+p)(1+p)+(1+p)(1+p)(1+p)+......+(1+p)(1+p 2020-06-03 …
1.已知点P(x,-1),Q(2,y).(1)若P、Q关于x轴对称,则x=,y=;(2)若PQ⊥x 2020-06-04 …
有一汽车站,某天某段时间内出事故的概率是0.0001,某天有1000辆汽车经过,求出事故不小于2的 2020-07-12 …
如图,平面上有直线a及直线a外的三点A、B、P.(1)过点P画一条直线m,使得m∥a;(2)若直线 2020-07-15 …
已知X,Y的概率分布分别为P(X=1)=P(X=0)=1/2,P(Y=1)=3/4,P(Y=0)= 2020-07-20 …
已知条件p:x≦1条件p:1/x 2020-07-22 …
根据下列条件求圆的方程:(1)经过点P(1,1)和坐标原点,并且圆心在直线2x+3y+1=0上;( 2020-07-26 …
设A,B是两随机事件,已知P(B)=1/3,P(非A|非B)=1/4,P(非A|B)=1/5试求P( 2020-12-07 …
这两个关于命题的定义不懂.1、一般地,如果P=>Q,那么称P是Q的充分条件,同时称Q是P的必要条件. 2020-12-29 …