在三角形ABC中,O为外心,I为内心.AB
证明:
辅助线如图所示:
∵O为外心
∴∠AOB=2∠C=60°
∴△AOB为等边三角形
∵I为内心
∴∠IAB=∠IAE
又∵AB=AE
利用SAS可知:△IAB≌△IAE
同理可证:△IAB≌△IDB
∴∠EIA=∠DIB=∠AIB
=180°-(∠IAB+∠IBA)=180°-(∠CAB+∠CBA)/2
=180°-(180°-30°)/2=105°
∴∠EID=360°-3∠EIA=360°-3×105°=45°
∠EFD
=(∠AEO-∠ECF)+(∠BDI-∠DCF)=∠AEO+∠BDI-(∠ECF+∠DCF)
=(90°-∠EAO/2)+∠BAI-30°=60°+(∠BAE-∠EAO)/2
=60°+∠BAO/2=60°+30°
=90°
∴EO⊥DI
同理可知:DO⊥EI
∴O为△EID的垂心
∴IO⊥ED
在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图28-1,倍角△AB 2020-05-13 …
三角形ABC中,散影A的平方加扩散应B的平方加二倍散影A扩散应B等于0,三角形ABC是什么三角形A 2020-05-14 …
已知A,B,C为三角形的三个内角,它们的对边长分别为a,b,c,已知直线xsinA+ysinB+s 2020-05-19 …
已知A,B,C为三角形的三个内角,它们的对边长分别为a,b,c,已知直线xsinA+ysinB+s 2020-05-19 …
已知A,B,C为三角形的三个内角,它们的对边长分别为a,b,c,已知直线xsinA+ysinB+s 2020-05-19 …
关于正弦定理解题a、b、c为三角形三边,若c^2=a^2+b^2,则三角形为直角三角形问:1、a、 2020-05-22 …
已知a,b,c是三角形ABC的三边长,(a-5)^2+|b-12|+c^2-26c+169=0,则 2020-07-18 …
如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为"倍角三角形".对于任意的倍角三 2020-07-19 …
若a,b,c为三角形三边,且满足a^2+b^2+c^2-2ab-2bc=0,则三角形为()选项如下 2020-08-02 …
若a、b、c为三角形的三边长,且方程a(1+x)2+2bx-c(1-x2)=0的两根相等,则此三角形 2020-11-07 …