早教吧 育儿知识 作业答案 考试题库 百科 知识分享

以原点为圆心的圆全部在区域x−3y+6≥0x−y+2≥0内,则圆的面积的最大值为()A.185πB.95πC.2πD.π

题目详情
以原点为圆心的圆全部在区域
x−3y+6≥0
x−y+2≥0
内,则圆的面积的最大值为(  )
A.
18
5
π
B.
9
5
π
C. 2π
D. π
▼优质解答
答案和解析
据条件画出线性可行域,结合图形,要使得以原点为圆心的圆的半径最大,
根据点到直线的距离公式可知,原点到直线x-y+2=0的距离为:d1=
|2|
2
=
2

∵以原点为圆心的圆的半径大于
2
时,由所画图中的阴影部分的可行域可知此时圆有部分面积不在此可行域内,
∴只有圆与直线x-y+2=0相切时,圆的半径最大R=d1
即R=
2
2
=
2

此时圆的最大面积为S=π(
2
2=2π.
故选C.