早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知椭圆a=3,c=2,焦点在x轴上,过左焦点F,作斜率为k1的直线,交椭圆于A,B两点设R(1,0),连接AR,BR并延长,交椭圆于C,D两点.直线CD的斜率是k2,求证:k1/k2是定值,并求此定值.

题目详情
已知椭圆a=3,c=2,焦点在x轴上,过左焦点F,作斜率为k1的直线,交椭圆于A,B两点 设R(1,0),连接AR,BR
并延长,交椭圆于C,D两点.直线CD的斜率是k2,求证:k1/k2是定值,并求此定值.
▼优质解答
答案和解析
a=3,c=2,b^2=a^2-c^2=9-4=5,左焦点F(-2,0)
故椭圆方程是x^2/9+y^2/5=1.直线AB方程是y=k1(x+2)
设A(x1,y1),B(x2,y2)
设C(x3,y3),D(x4,y4),
由已知,直线AR的方程为y=y1/(x1-1)(x-1),即x=(x1-1)/y1*y+1
代入椭圆方程消去x并整理,得(5-x1)/y1^2*y^2+(x1-1)/y1*y-4=0
则y1y3=-4y1^2/(5-x1),∴y3=4y1/(x1-5)
∴x3=(x1-1)/y1*y3+1=(5x1-9)/(x1-5)
∴C((5x1-9)/(x1-5),4y1/(x1-5))
同理D((5x2-9)/(x2-5),4y2/(x2-5))
∴k2=[4y1/(x1-5)-(-4y2/(x2-5))]/[(5x1-9)/(x1-5)-(5x2-9)/(x2-5)]
=[4y1(x2-5)-4y2(x1-5)]/(16(x2-x1))
∵y1=k1(x1+2),y2=k2(x2+2),
∴k2=[4k1(x1+2)(x2-5)-4k2(x2+2)(x1-5)]/16(x2-x1)
=7k1(x2-x1)/4(x2-x1)
=7k1/4
∴k1/k2=4/7(为定值)