早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2,F为CD的中点.(1)求证:AF⊥平面CDE;(2)求证:AF∥平面BCE;(3)求四棱锥C-ABED的体积.

题目详情
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2,F为CD的中点.
(1)求证:AF⊥平面CDE;
(2)求证:AF∥平面BCE;
(3)求四棱锥C-ABED的体积.
▼优质解答
答案和解析
(1)证明:∵F为等边三角形CD边上的中点,
∴AF⊥CD,
∵DE⊥平面ACD,AF⊂平面ACD,
∴AF⊥DE,
又CD∩DE=D,∴AF⊥平面CDE.
(2)证明:取CE的中点G,连FG、BG.∵F为CD的中点,
∴GF∥DE且GF=
1
2
DE.
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.
又AB=
1
2
DE,∴GF=AB.
∴四边形GFAB为平行四边形,则AF∥BG.
∵AF⊄平面BCE,BG⊂平面BCE,∴AF∥平面BCE.
(3)取AD中点M,连接CM,
∵△ACD为等边三角形,则CM⊥AD,
∵DE⊥平面ACD,且DE⊂平面ABED,
∴平面ACD⊥平面ABED,
又平面ACD∩平面ABED=AD,∴CM⊥平面ABED,
∴CM为四棱锥C-ADEB的高,
∴V=
1
3
CM•SABED=
1
3
AF•SABED=
3