早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•合肥二模)如图,三棱台ABC-DEF中,CF⊥平面DEF,AB⊥BC.(Ⅰ)设平面AEC∩平面DEF=a,求证DF∥a;(Ⅱ)若EF=CF=2BC,试同在线段BE上是杏存在点G,使得平面DFG⊥平面CDE,若存在,请确

题目详情
(2014•合肥二模)如图,三棱台ABC-DEF中,CF⊥平面DEF,AB⊥BC.
(Ⅰ)设平面AEC∩平面DEF=a,求证DF∥a; 
(Ⅱ)若EF=CF=2BC,试同在线段BE上是杏存在点G,使得平面DFG⊥平面CDE,若存在,请确定G点的位置;若不存在,说明理由.
▼优质解答
答案和解析
(Ⅰ)证明:在三棱台ABC-DEF中,AC∥DF,
∵AC⊂平面ACE,DF⊄平面ACE,
∴DF∥平面ACE,
∵DF⊂平面DEF,平面ACE∩平面DEF=a,
∴DF∥a.
(Ⅱ)线段BE上存在点G,且BG=
1
3
BE,使得平面DFG⊥平面CDE,
证明如下:
取CE中点O,连结FO并延长交BE于点G,连结GD、GF,
∵CF=EF,∴GF⊥CE,
在三棱锥ABC-DEF中,AB⊥BC,∴DE⊥EF,
由CF⊥平面DEF,得CF⊥DE,又CF∩EF=F,
∴DE⊥平面DEF,∴DE⊥GF,
∵GF⊥CE,GF⊥DE,CE∩DE=E,∴GF⊥平面CDE,
又GF⊂平面DFG,∴平面DFG⊥平面CDE,
此时,如平面图所示,∵O为CE中点,CF=EF=2BC,
由平面几何知识,得△HOC≌△FOE,
∴HB=BC=
1
2
EF,
由△HGB∽△FOE,得
BG
GE
1
2

∴BG=
1
3
BE.