早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如题(19)图,四棱锥P-ABCD中,底面ABCD为矩形,PA底面ABCD,PA=AB=,点E是棱PB的中点。(Ⅰ)求直线AD与平面PBC的距离;(Ⅱ)若AD=,求二面角A-EC-D的平面角的余弦值

题目详情

 

    如题(19)图,四棱锥P-ABCD中,底面ABCD为矩形,

PA底面ABCD,PA=AB=,点E是棱PB的中点。

   (Ⅰ)求直线AD与平面PBC的距离;

   (Ⅱ)若AD=,求二面角A-EC-D的平面角的余弦值。

 

 

▼优质解答
答案和解析

 

解法一:

   (I)如答(19)图1,在矩形ABCD中,AD//BC,

从而AD//平面PBC,故直线AD与平面PBC的距离

为点A到平面PBC的距离.

    因PA⊥底面ABCD,故PA⊥AB,由PA=AB知

为等腰直角三角形,又点E是棱PB的中点,故AE⊥PB

又在矩形ABCD中,BC⊥AB,而AB是PB在底面ABCD

内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,

故BC⊥AE,从而AE⊥平面PBC,故AE之长即为直线AD与平面PBC的距离.

    在中,PA=AB=,所以

   (II)过点D作DF⊥CE,交CE于F,过点F作FG⊥CE,交AC于G,则为所求的二面角的平面角.

由(I)知BC⊥平面PAB,又AD//BC,得AD⊥平面PAB,

故AD⊥AE,从而

中,为等边三角形,故F为CE的中点,且

因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知,从而

且G点为AC的中点.

连接DG,则在

所以

解法二:

   (I)如答(19)图2,以A为坐标原点,射线AB、AD、AP分别为x轴、y轴、z轴正半轴,建立空间直角坐标系A—xyz.

    设D(0,a,0),则

    .

    因此

   

    则,所以AE⊥平面PBC.

又由AD//BC知AD//平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,即为

   (II)因为

设平面AEC的法向量

所以

可取

设平面DEC的法向量

 

所以

所以二面角A—EC—D的平面角的余弦值为

 

看了 如题(19)图,四棱锥P-A...的网友还看了以下:

物理:某人在生活中观察到下面几种现象a.在阳光下看到自己的影子;b.厚玻璃下面的字靠近玻璃板的表面;  2020-03-29 …

共有兴趣者研究!1、下列不能说明液体能传声的是()A.海豚能随着驯兽员的哨声在水中表演节目B.花样游  2020-03-31 …

下列物质分离过程中涉及共价键断裂的是A.用渗析法除去淀粉胶体中少量的NaClB.用饱和食盐水洗去C  2020-05-13 …

下列过程中,不涉及化学变化的是A、浓硫酸加入蔗糖固体中B、SO2使品红溶液褪色C、四氯化碳萃取碘水  2020-05-13 …

下列物质分离的过程中涉及共价键断裂的是()A.用饱和食盐水洗去Cl2中的少量HCIB.用蒸馏法除去  2020-05-13 …

(2007•大兴区一模)在图1所示的四种情景中,由于光在均匀介质中沿直线传播形成的是()A.光彩夺  2020-05-14 …

选出加点词的意思完全相同的一项A不亦乐乎,其乐无穷,公大笑乐中的乐B家破人亡,马无故亡,大亡其财中  2020-05-14 …

种植大豆,花生等豆科植物时,不需要是使用氮肥的原因是( )A.土壤中氮肥较多B.空气中有大量氮气C  2020-05-17 …

读“李恂不受馈”回答问题拜:贾:遗:2.选出于“策之不以其道”中“策”字用法不同的是()A.毕力平  2020-05-17 …

种植豆科植物一般不需要施氮肥,是因为()A.豆科植物生长不需要氮B.与豆科植物共生的根瘤菌能固定空  2020-05-17 …