早教吧作业答案频道 -->数学-->
1、简述二元函数z=f(x,y)在点(x0,y0)连续,可偏导,可微及有一阶连续偏导数彼此之间的关系.2、如果f(x,y)在(x0,y0)处可微,则(x0,y0)为f(x,y)极值点的必要条件是什么?(两题为简答题,求完整答案,)
题目详情
1、简述二元函数z=f(x,y)在点(x0,y0)连续,可偏导,可微及有一阶连续偏导数彼此之间的关系.2、如果f(x,y)在(x0,y0)处可微,则(x0,y0)为f(x,y)极值点的必要条件是什么?(两题为简答题,求完整答案,)
▼优质解答
答案和解析
这本来是要学生自己总结的,翻翻书吧.
1、二元函数z=f(x,y)在点(x0,y0)连续,可偏导,可微及有一阶连续偏导数彼此之间的关系:
有一阶连续偏导数 ==>可微 ==> 连续;
可微 ==> 可偏导;
可偏导 =≠> 连续.
2、如果 f(x,y) 在 (x0,y0) 处可微,则(x0,y0)为f(x,y)极值点的必要条件是:fx(x0,y0) = fy(x0,y0) = 0.
1、二元函数z=f(x,y)在点(x0,y0)连续,可偏导,可微及有一阶连续偏导数彼此之间的关系:
有一阶连续偏导数 ==>可微 ==> 连续;
可微 ==> 可偏导;
可偏导 =≠> 连续.
2、如果 f(x,y) 在 (x0,y0) 处可微,则(x0,y0)为f(x,y)极值点的必要条件是:fx(x0,y0) = fy(x0,y0) = 0.
看了 1、简述二元函数z=f(x,...的网友还看了以下:
高一一小题⑴求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0) 2020-06-10 …
对于三次函数f(x)=ax3+bx2+cx+d(a≠0)有如下定义:定义(1):设f″(x)是函数 2020-06-22 …
已知函数y=f(x)对一切非零x满足xf′(x)+3x[f′(x)]2=1-e-x,f′(x0)= 2020-06-22 …
设函数y=f(x)在点x0处可微,则下面表达式不正确的是()A.limx→x0f(x)=f(x0) 2020-07-22 …
导数的定义△y/△x=f(x0+△x)-f(x0)/△x,当△x趋于零的时候,会无限趋近于常数A. 2020-07-29 …
已知函数f(x)=x2-(a+2)x+alnx.其中常数a>0(Ⅰ)讨论函数f(x)的单调性;(Ⅱ 2020-08-01 …
设函数y=f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy=f(x0+Δx)− 2020-11-01 …
(2004•苏州)如图,平面直角坐标系中画出了函数y=kx+b的图象.(1)根据图象,求k,b的值; 2020-12-08 …
定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=f 2020-12-31 …
函数y=f(x)在x=x0处的导数f′(x0)的几何意义是()A.在点(x0,f(x0))处与y=f 2021-01-22 …