早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f(x)在区间[-1,2]上连续且平均值为6,则定积分∫上限为2下限为-1f(x)dx等于

题目详情
设f(x)在区间[-1,2]上连续且平均值为6,则定积分∫上限为2下限为-1f(x)dx等于
▼优质解答
答案和解析
f(x)在区间[-1,2]上连续且平均值为6,即:∫(-1,2)f(x)dx/(2-(-1))=6
∫(-1,2)f(x)dx=18