早教吧作业答案频道 -->数学-->
可积的充分条件是f(x)在〔a,b〕连续.f(x)在〔a,b〕上有界且只有限个间断点;我想知道函数连续能可积,为什么存在有限个间断点也可积呢?
题目详情
可积的充分条件是f(x)在〔a,b〕连续.f(x)在〔a,b〕上有界且只有限个间断点;我想知道函数连续能可积,为什么存在有限个间断点也可积呢?
▼优质解答
答案和解析
函数的可积性是针对于定积分提出来的,跟不定积分和广义积分没啥关系.
2,所有的充分条件中都要求“闭区间”这个最重要的条件.
3,关于第二个充分条件的讨论:有界且有有限个间断点则说明间断点的类型包括第一类间断点(可去间断点和跳跃间断点),第二类间断点中的震荡间断点而不包括无穷间断点,因为无穷间断点使得函数在闭区间内无界.进一步来思考:一般定积分我们用牛-莱公式计算,而第一类间断点使得积分不存在原函数,所以应该用分段积分法计算.第二类间断点,震荡间断点比如说SIN(1/X)的积分虽然可积,但积分如何计算至今还没碰见这类问题,需查积分表,这也超出了我们的考察范围!无穷间断点不可积,但可以用广义积分判断其敛散性,若其他情况,只要能判断其原函数存在,用牛-莱公式即可!
4,关于可积充分条件的第三个条件:函数的单调性是对于连续函数说的,若有间断点,就无所谓单调性了,所以教材上并未列出这个条件,估计是二李想用“闭区间上单调函数必有界”
2,所有的充分条件中都要求“闭区间”这个最重要的条件.
3,关于第二个充分条件的讨论:有界且有有限个间断点则说明间断点的类型包括第一类间断点(可去间断点和跳跃间断点),第二类间断点中的震荡间断点而不包括无穷间断点,因为无穷间断点使得函数在闭区间内无界.进一步来思考:一般定积分我们用牛-莱公式计算,而第一类间断点使得积分不存在原函数,所以应该用分段积分法计算.第二类间断点,震荡间断点比如说SIN(1/X)的积分虽然可积,但积分如何计算至今还没碰见这类问题,需查积分表,这也超出了我们的考察范围!无穷间断点不可积,但可以用广义积分判断其敛散性,若其他情况,只要能判断其原函数存在,用牛-莱公式即可!
4,关于可积充分条件的第三个条件:函数的单调性是对于连续函数说的,若有间断点,就无所谓单调性了,所以教材上并未列出这个条件,估计是二李想用“闭区间上单调函数必有界”
看了 可积的充分条件是f(x)在〔...的网友还看了以下:
定积分不存在说明什么?瑕积分存在是否有几何意?比如一个函数f(x),在x=0处是无穷间断点,但它在 2020-05-16 …
y-2分之y-1=3-5分之y+2注意,减一在分之上面,加2也在分之上面,分之不要用/,中文就好啦 2020-05-20 …
f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x 2020-06-15 …
f(x)在x=a的某个领域内有定义,则f(x)在x=a处可导的一个充分条件是()Alim[f(a+ 2020-06-18 …
微分中值定理相关设f(x)在有限区间(a,b)内可导,但f(x)无界,试证在区间(a,b)内也无界 2020-06-22 …
如果X=X0是函数F(X)的驻点,则x=x0是函数f(x)的极值点的()A必要但非充分条件,B充分 2020-07-31 …
连续函数f(x)在[a,b]上有最大值是f(x)有极大值的.连续函数f(x)在[a,b]上有最大值 2020-08-01 …
如果f(x)在(a,b)内可正可负,则对其从a到b积分,结果一定也是可正可负的吗?如果f(x)在(a 2020-11-03 …
一元一次方程去括号、去分母的方法,请附上详细说明以及例题,百科上的不要.未知数也在分数之内的这个也是 2020-11-21 …
函数在对称区间积分为零,函数不一定是奇函数吧?题目说在(-a,a)上对f(x)积分为0,则,f(x) 2020-11-22 …