早教吧 育儿知识 作业答案 考试题库 百科 知识分享

f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x在(0,a)内也单调增加f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x在(0,a)内也单调增加

题目详情
f(x)在[0,a]上连续 在(0,a)内可导 且f(0)=0 f(x)的导数单调增加 求证:f(x)/x在(0,a)内也单调增加
f(x)在[0,a]上连续 在(0,a)内可导 且f(0)=0 f(x)的导数单调增加
求证:f(x)/x在(0,a)内也单调增加
▼优质解答
答案和解析
令F(x)=f(x)/x,x∈[0,a]
F'(x)=[xf'(x)-f(x)]/x^2
另g(x)=xf'(x)-f(x)
g'(x)=f'(x)+xf''(x)-f'(x)=xf''(x)
∵f(x)的导数单调递增
∴f''(x)≥0
显然x>0
所以g'(x)≥0
∴g(x)为在(0,a)单调递增
∴g(x)≥H(0)=0-f(0)=0
∴F'(x)≥0
∴F(x)在(0,a)上单调递增