早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若y是关于x的函数,H是常数(H>0),若对于此函数图象上的任一两点(x1,y1),(x2,y2),都有|y1-y2|≤H,则称该函数为有界函数,其中满足条件的所有常数H的最小值,称为该函数的界

题目详情
若y是关于x的函数,H是常数(H>0),若对于此函数图象上的任一两点(x1,y1),(x2,y2),都有|y1-y2|≤H,则称该函数为有界函数,其中满足条件的所有常数H的最小值,称为该函数的界高.
例如:下面所表示的函数的界高为4.
作业帮
(1)若函数y=kx+1(-2≤x≤1)的界高为4,求k的值;
(2)已知m>-2,若函数y=x2(-2≤x≤m)的界高为4,求实数m的取值范围;
(3)已知a>0,函数y=x2-2ax+3a(-2≤x≤1)的界高为
25
4
,求a的值.
▼优质解答
答案和解析
(1)将x1=-2代入得;y1=-2k+1,将x2=1代入得:y2=k+1,
∵|y1-y2|=4,
∴|-3k|=4.
解得:k=±
4
3

(2)将y=4代入抛物线的解析式得:x2=4,解得:x1=-2,x2=2,
∴m=2.
∴m的取值范围是0≤m<2.
(3)当a≥1时,将x1=-2,x2=1代入函数解析式求得y1=4+7a,y2=1+a,
∵|y1-y2|=
25
4

∴3+6a=
25
4

解得:a=
13
24

又∵a≥1
故此种情况不成立;
当0≤a≤1时,将x1=-2,x2=a代入函数解析式得:y1=4+7a,y2=3a-a2
∵y1-y2=
25
4

∴a2+4a-
9
4
=0,
解得:a1=
1
2
,a2=-
9
2
(舍去)
故a=
1
2