早教吧作业答案频道 -->数学-->
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f′′′(ξ)=3.
题目详情
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,
证明:在开区间(-1,1)内至少存在一点ξ,使f′′′(ξ)=3.
证明:在开区间(-1,1)内至少存在一点ξ,使f′′′(ξ)=3.
▼优质解答
答案和解析
方法一:
在x=0处,将函数f(x)按照泰勒公式展开,得:
f(x)=f(0)+f′(0)x+
f″(0)x2+
f″′(η)x3,其中η介于0与x之间,x∈[-1,1],
由已知可得:
0=f(-1)=f(0)+
f″(0)-
f″′(η1),(-1<η1<0),…①
1=f(1)=f(0)+
f″(0)+
f″′(η2),(0<η2<1),…②
②-①得:
f″′(η2)+f″′(η1)=6,
由于:f(x)具有三阶连续导数,
从而:f″′(x)在闭区间[η1,η2]上连续,
故:f″′(x)在闭区间[η1,η2]上有最大值和最小值,
设最大值和最小值分别为M和m,
则:m≤
≤M,
由闭区间上连续函数的介值定理,得:
至少存在一点ξ∈[η1,η2]⊂[-1,1],使得:
f″′(ξ)=
=3.
方法二:(应用三次罗尔定理)
作辅助函数:φ(x)=
x2(x+1)+(1+x)(1-x)f(0),
则:φ(1)=f(1),φ(-1)=f(-1),φ(0)=f(0),φ′(0)=f′(0),
令:F(x)=f(x)-φ(x),
则:F(0)=F(1)=F(-1)=0,
易知F(x)满足罗尔定理,
从而,∃ξ1∈(-1,0),∃ξ2∈(0,1),使得:F′(ξ1)=F′(ξ2)=0,
而:F′(0)=0,
于是:F′(ξ1)=F′(0)=F′(ξ2)=0,
易知:F(x)也是具有三阶连续导数的.
从而对F′(x)应用罗尔定理得:∃η1∈(ξ1,0),η2∈(0,ξ2),使得:F″(η1)=F″(η2)=0,
又:在闭区间[η1,η2]上F″(x)满足罗尔定理的条件,
从而:∃ξ∈(η1,η2),使得:F′″(ξ)=0,
而:F′″(x)=f′″(x)-φ′″(x)且φ′″(x)=3,
∴f′″(ξ)=3.
方法一:
在x=0处,将函数f(x)按照泰勒公式展开,得:
f(x)=f(0)+f′(0)x+
1 |
2! |
1 |
3! |
由已知可得:
0=f(-1)=f(0)+
1 |
2 |
1 |
6 |
1=f(1)=f(0)+
1 |
2 |
1 |
6 |
②-①得:
f″′(η2)+f″′(η1)=6,
由于:f(x)具有三阶连续导数,
从而:f″′(x)在闭区间[η1,η2]上连续,
故:f″′(x)在闭区间[η1,η2]上有最大值和最小值,
设最大值和最小值分别为M和m,
则:m≤
f″′(η1)+f″′(η2) |
2 |
由闭区间上连续函数的介值定理,得:
至少存在一点ξ∈[η1,η2]⊂[-1,1],使得:
f″′(ξ)=
f″′(η1)+f″′(η2) |
2 |
方法二:(应用三次罗尔定理)
作辅助函数:φ(x)=
1 |
2 |
则:φ(1)=f(1),φ(-1)=f(-1),φ(0)=f(0),φ′(0)=f′(0),
令:F(x)=f(x)-φ(x),
则:F(0)=F(1)=F(-1)=0,
易知F(x)满足罗尔定理,
从而,∃ξ1∈(-1,0),∃ξ2∈(0,1),使得:F′(ξ1)=F′(ξ2)=0,
而:F′(0)=0,
于是:F′(ξ1)=F′(0)=F′(ξ2)=0,
易知:F(x)也是具有三阶连续导数的.
从而对F′(x)应用罗尔定理得:∃η1∈(ξ1,0),η2∈(0,ξ2),使得:F″(η1)=F″(η2)=0,
又:在闭区间[η1,η2]上F″(x)满足罗尔定理的条件,
从而:∃ξ∈(η1,η2),使得:F′″(ξ)=0,
而:F′″(x)=f′″(x)-φ′″(x)且φ′″(x)=3,
∴f′″(ξ)=3.
看了 设函数f(x)在闭区间[-1...的网友还看了以下:
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
已知函数f(x)=-x+loga^1-x/1+x,则f(-1/5)+f(-1/4)+f(-1/3) 2020-06-09 …
如果记y=x^2/(1+x^2)=f(x).则f(1)表示当x=1是y的值,即f(1)=1^2/( 2020-06-12 …
f(3X+1)=9X^-6x+5求f(X)的解析式f(√x+1)=x+2√2求f(x)若一次函数f 2020-06-20 …
解:(1)f(x+1)=f(x)-f(x-1)=[f(x-1)-f(x-2)]-f(x-1)=-f 2020-07-19 …
已知集合A={1,2,3},B={-1,o,1}已知集合A={1,2,3},B={-1,0,1}, 2020-07-30 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
已知fx是定义在实数集R上的奇函数,且当x大于0时fx=x^2-4x+31,求f[f(-已知fx是定 2020-11-07 …
高中数学抽象函数已知定义在(-1,1)上的函数f(x)满足f(1/2)=1,且对任意x,y∈(-1, 2020-12-08 …
f(1+X)的定义域为[-2,3],求f[X]的定义域函数f(2X-1)的定义域为[0,1),求函数 2021-01-31 …