早教吧 育儿知识 作业答案 考试题库 百科 知识分享

定义满足不等式|x-A|<B(A∈R,B>0)的实数x的集合叫做A的B邻域.若a+b-t(t为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为t22t22.

题目详情
定义满足不等式|x-A|<B(A∈R,B>0)的实数x的集合叫做A的B 邻域.若a+b-t(t为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为
t 2
2
t 2
2
▼优质解答
答案和解析
因为:A的B邻域在数轴上表示以A为中心,B为半径的区域,
∴|x-(a+b-t)|<a+b⇒-t<x<2(a+b)-t,
而邻域是一个关于原点对称的区间,所以可得a+b-t=0⇒a+b=t.
又因为:a2+b2≥2ab⇒2(a2+b2)≥a2+2ab+b2=(a+b)2=t2
所以:a2+b2
2
2

故答案为:
2
2