早教吧 育儿知识 作业答案 考试题库 百科 知识分享

乘积1×2×3×4×…×1990×1991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?

题目详情
乘积1×2×3×4×…×1990×1991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?
▼优质解答
答案和解析
此题中是1991个数字的连乘积,原式中去掉所有5的倍数得:
1×2×3×4×6×7×8×9×11×12×13×14×16×17×18×19×21×22×23×24×26×27×28×29×…×1981×1982×1983×1984×1986×1987×1988×1989×1991≡(1×2×3×4×6×7×8×9)×(1×2×3×4×6×7×8×9)×…×(1×2×3×4×6×7×8×9)×1≡6×6×…×6×1
所有数的乘积除以了495个5之后得到的个位数字是6,那还要除以495个2才可以,因为他们乘到一起变成了495个0,再除以495个2就相当于把末尾的0全部去掉了,那么此时的个位数字就是要求的第一个不为0的数.
2的495次方的个位数字是8;
2的n次方的个位数字是2,4,8,6四位一周期,
495÷4=123…3;
那么用刚才我们除以495个5之后得到的个位数字6除以8,就会得到最终的个位数字,6÷8的个位数字是2(就是2×8个位数字是6,当然7×8的个位数字也是6,但是注意了2的个数要远多于495个,所以最终的去掉495个0之后的数一定是个偶数,所以只能是2.