早教吧作业答案频道 -->数学-->
showthatFibonaccinumberssatisfytherecurrencerelationfn=5f(n-4)+3f(n-5)forn=5,6,7...,togetherwiththeinitialconditionsf0=0,f1=1,f2=1,f3=2,f4=3.usethisrecurrencerelationtoshowthatf5nisdivisibleby5,forn=1,2,3...注:fibonacci
题目详情
show that Fibonacci numbers satisfy the recurrence relation fn=5f(n-4)+3f(n-5) for n=5,6,7...,together with the initial conditions f0=0,f1=1,f2=1,f3=2,f4=3.use this recurrence relation to show that f5n is divisible by 5,for n=1,2,3...
注:fibonacci number满足fn=f(n-1)+f(n-2)
注:fibonacci number满足fn=f(n-1)+f(n-2)
▼优质解答
答案和解析
fn=f(n-1)+f(n-2)=f(n-2)+2f(n-3)+f(n-4)
=f(n-3)+f(n-4)+2f(n-3)+f(n-4)=3f(n-3)+2f(n-4)=3(f(n-4)+f(n-5))+2f(n-4)=5f(n-4)+3f(n-5)
归纳法证明,当n=1时,f5=5,5整除f5,命题成立,假设命题对任意n成立,下面考虑n+1时的情况,利用上面等式有
f5(n+1)=f(5n+5)=5f(5n+1)+3f(5n)
由归纳法假设上式右边第2项被5整除,第1项含有因子5,故f5(n+1)也能被5整除,完成归纳法证明,故对任意n,fn能被5整除.
=f(n-3)+f(n-4)+2f(n-3)+f(n-4)=3f(n-3)+2f(n-4)=3(f(n-4)+f(n-5))+2f(n-4)=5f(n-4)+3f(n-5)
归纳法证明,当n=1时,f5=5,5整除f5,命题成立,假设命题对任意n成立,下面考虑n+1时的情况,利用上面等式有
f5(n+1)=f(5n+5)=5f(5n+1)+3f(5n)
由归纳法假设上式右边第2项被5整除,第1项含有因子5,故f5(n+1)也能被5整除,完成归纳法证明,故对任意n,fn能被5整除.
看了 showthatFibona...的网友还看了以下:
matlab 结果用参数表示syms t a b c h;u=a/(4*3*2*1)*t^4+b/ 2020-05-16 …
斐波那契数列Fn定义如下:F0=0,F1=1,F2=1,F3=2,.,Fn=Fn-1+Fn+2(n 2020-07-23 …
已知圆F1:(x+根号2)^2+y^2=1/12,圆F2:(x-根号2)^2+y^2=121/12 2020-07-31 …
showthatFibonaccinumberssatisfytherecurrencerelat 2020-07-31 …
已知抛物线y2=4x的焦点为f2,点f1与f2关于坐标原点对称,若以f1,f2为焦点的椭圆C过点( 2020-08-02 …
1,关于力的合成,如果两个分力的夹角是α,那么F=根号下(F1^2+F2^2+2F1F2cosα) 2020-08-02 …
信号与系统问题1若f1(t)的奈奎斯特取样率为w1,f2(t)的为w2,那么f(t)=f1(t+1) 2020-10-31 …
已知F1,F2是两个定点,点P是以F1,F2为公共焦点的椭圆与双曲线的一个交点,并且PF1垂直于PF 2020-10-31 …
x=f1(s,t)y=f2(s,t)z=f3(s,t)用matlab计算出F(x,y,z)=0x=f 2020-11-01 …
1设f(x)=x/x+1,定义f1(x)=f(x),f2(x)=f1(f(x)),f3(x)=f2( 2020-11-29 …