早教吧 育儿知识 作业答案 考试题库 百科 知识分享

两道关于积分的证明题1、证明∫0到π(sinx)^ndx=2倍∫0到π/2(sinx)^ndx2、证明:连续函数f(x)是偶函数,则g(x)=∫0到xf(t)dt是奇函数

题目详情
两道关于积分的证明题
1、证明∫0到π(sin x)^ndx=2倍∫0到π/2 (sin x)^ndx
2、证明:连续函数f(x)是偶函数,则g(x)=∫0到xf(t)dt是奇函数
▼优质解答
答案和解析
∫0到π(sin x)^ndx=∫0到π/2 (sin x)^ndx+∫π/2到π (sin x)^ndx
根据定理,f(x)在[0,1]连续,∫0到π/2f(sinx)dx=∫0到π/2f(cos)dx
∫π/2到π (sin x)^ndx=∫0到π/2 (sin( x+π/2))^ndx=∫0到π/2(cos x)^ndx=∫0到π/2 (sin x)^ndx
因此∫0到π(sin x)^ndx=∫0到π/2 (sin x)^ndx+∫π/2到π (sin x)^ndx=2*∫0到π/2 (sin x)^ndx
2、
续函数f(x)是偶函数f(t)=f(-t)
g(x)=∫0到xf(t)dt
g(-x)=∫0到(-x)f(t)dt=∫0到xf(-t)d(-t)=-∫0到xf(t)d(t)=-g(x)
所以g(x)为奇函数