早教吧作业答案频道 -->数学-->
关于正方形证明题在正方形ABCD中,o是对角线AC,BD的交点,过点o做OE垂直OF,分别交AB,BC于点E,F,AE=4,CF=3.求(1)EF的长(2)四边形OEBF的面积
题目详情
关于正方形证明题
在正方形ABCD中,o是对角线AC,BD的交点,过点o做OE垂直OF,分别交AB,BC于点E,F,AE=4,CF=3.求
(1)EF的长
(2)四边形OEBF的面积
在正方形ABCD中,o是对角线AC,BD的交点,过点o做OE垂直OF,分别交AB,BC于点E,F,AE=4,CF=3.求
(1)EF的长
(2)四边形OEBF的面积
▼优质解答
答案和解析
在四边形OEBF中
OE⊥OF
所以∠EOF=90
而ABCD为正方形
所以∠EBF=90
所以∠EBF+∠EOF+∠BEO+∠BFO=(4-2)*180
所以∠BEO+∠BFO=180
而∠OFC+∠BFO=180
所以∠OFC=∠BEO
在三角形BEO和三角形CFO中
∠BEO=∠OFC(已求得)
∠EBO=∠FCO=45(正方形的对角线与各边所成均为45度)
BO=CO(正方形的对角线相等,且互相平分)
所以三角形BEO和三角形CFO全等(AAS)
所以BE=FC
而CF=3
所以BE=3
所以正方形的边长就为AE+BE=7
所以BF=7-3=4
所以EF=√(3^2+4^2)=√25=5
OE⊥OF
所以∠EOF=90
而ABCD为正方形
所以∠EBF=90
所以∠EBF+∠EOF+∠BEO+∠BFO=(4-2)*180
所以∠BEO+∠BFO=180
而∠OFC+∠BFO=180
所以∠OFC=∠BEO
在三角形BEO和三角形CFO中
∠BEO=∠OFC(已求得)
∠EBO=∠FCO=45(正方形的对角线与各边所成均为45度)
BO=CO(正方形的对角线相等,且互相平分)
所以三角形BEO和三角形CFO全等(AAS)
所以BE=FC
而CF=3
所以BE=3
所以正方形的边长就为AE+BE=7
所以BF=7-3=4
所以EF=√(3^2+4^2)=√25=5
看了 关于正方形证明题在正方形AB...的网友还看了以下:
初2的(矩形判定题目)E为平行四边行ABCD外一点,若AE垂直EC,BE垂直ED.求证平行四边行AB 2020-03-30 …
如图①,四边形ABCD是平行四边形,对角线AC,BD相交于点O,过点O做直线EF分别交AD,BC于 2020-05-15 …
如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O交AD于E,交BC于F如图,平行四边形 2020-05-15 …
质点从o点起做速度为零的匀加速直线运动,试证明:(1)从o点起在连续相等的时间t内质点所通过的质点 2020-06-26 …
如图,三角形ABC中,点O是边AC上的一个动点,过O点做直线MN平行于BC,设MN交角BCA的平分 2020-08-03 …
三角形ABC中点C是AC边上的一动点,过点O做直线MN平行BC,设MN交∠BAC的平分线于点E,交 2020-08-03 …
三角形ABC中点C是AC边上的一动点,过点O做直线MN平行BC,设MN交∠BAC的平分线于点E,交 2020-08-03 …
已知O,A,B,C为同一直线上的四点,AB间的距离为L1,BC间距离为L2.一物体自O点由静止出发, 2020-12-09 …
已知O、A、B、C为同一直线上的四点,求O与A的距离.已知O、A、B、C为同一直线上的四点,AB间的 2020-12-09 …
如图所示,质点从O点起做初速为零的匀加速直线运动,试证明在连续相等的时间t内质点所通过的位移之比s1 2020-12-09 …