早教吧作业答案频道 -->数学-->
已知函数f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,说明理由.
题目详情
已知函数f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,说明理由.
(1)求f(x)的单调增区间;
(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,说明理由.
▼优质解答
答案和解析
解 f′(x)=ex-a,
(1)若a≤0,则f′(x)=ex-a≥0,
即f(x)在R上递增,
若a>0,ex-a≥0,∴ex≥a,x≥ln a.
因此f(x)的递增区间是[lna,+∞).
(2)由f′(x)=ex-a≤0在(-2,3)上恒成立.
∴a≥ex在x∈(-2,3)上恒成立.
又∵-2<x<3,∴e-2<ex<e3,只需a≥e3.
当a=e3时f′(x)=ex-e3在x∈(-2,3)上,f′(x)<0,
即f(x)在(-2,3)上为减函数,
∴a≥e3.
故存在实数a≥e3,使f(x)在(-2,3)上单调递减.
(1)若a≤0,则f′(x)=ex-a≥0,
即f(x)在R上递增,
若a>0,ex-a≥0,∴ex≥a,x≥ln a.
因此f(x)的递增区间是[lna,+∞).
(2)由f′(x)=ex-a≤0在(-2,3)上恒成立.
∴a≥ex在x∈(-2,3)上恒成立.
又∵-2<x<3,∴e-2<ex<e3,只需a≥e3.
当a=e3时f′(x)=ex-e3在x∈(-2,3)上,f′(x)<0,
即f(x)在(-2,3)上为减函数,
∴a≥e3.
故存在实数a≥e3,使f(x)在(-2,3)上单调递减.
看了 已知函数f(x)=ex-ax...的网友还看了以下:
高中数学,有题有答案,对答案有疑问已知a是实数,函数f(x)=2ax^2+2x-3-a,如果函数y= 2020-03-30 …
1.若不等式3x-a小于等于0只有两个正整数解,求a的取值范围2.若不等式2x-m大于等于0的负整 2020-05-13 …
高中导数问题(2条题)1若函数f(x)=x^3-12x在区间(k-1,k+1)上不是单调函数,则实 2020-05-14 …
f(x)=ax2+bx+c 若a=1,c=0.且|f(x)|≤1在区间(0,1]上恒成立.求b的取 2020-05-14 …
关于高一数学(某方程在某区间上有解,求取值范围)的一道题关于X的二次方程x2+(m-1)x+1=0 2020-05-16 …
不等式3x²-loga^<0在区间(0,1/3)内恒成立,则a的取值范围是不等式3x²-loga^ 2020-05-16 …
高一关于图形变换的数学题(急)已知函数f(x)=|2x-a|在区间[2,+∞)上市增函数,则a的取 2020-05-16 …
函数f(x)=x²-2x+3在区间[0,m]上有最大值3,最小值2,则m的取值范围是已知函数f(x 2020-05-16 …
关于x的二次方程7x^2-(a+13)x+2a+2=0有两个实数根分别介于0与1之间以及1与2之间 2020-05-16 …
所谓法律规范的时间效力是指( )。 A.其开始生效的时间B.其在时间上的追溯及力C.其发 2020-05-30 …