早教吧 育儿知识 作业答案 考试题库 百科 知识分享

有关函数单调性与导数的关系对可导函数f(x)的对应导数f'(x)由高三公式可得解析式.若f(x)有单调去见则由f'(x)>0或f'(x)<0可得f(x)的单调增或减区间.但当f'(x)=0时f(x)的单调性为什么?此时f(x)的

题目详情
有关函数单调性与导数的关系
对可导函数f(x)的对应导数f'(x)由高三公式可得解析式.若f(x)有单调去见则由f'(x)>0或f'(x)<0可得f(x)的单调增或减区间.但当f'(x)=0时f(x)的单调性为什么?此时f(x)的极值为什么?
▼优质解答
答案和解析
楼上说法不全.
f'(x)=0,如果在某个区间上恒成立,则f(x)是个常值函数,不增不减
如果是某几个点成立,则不影响整体的单调性.
比如 f(x)=x³,f'(x)=3x²,在x=0处,f'(x)=0,f'(x)≥0,f(x)=x³是一个增函数
f'(x)=0恒成立,则没有极值,
如果是某几个点成立,则利用一下结论判断
左正右负,则这个点是极大值点
左负右正,则这个点是极小值点.