早教吧作业答案频道 -->数学-->
设sn为数列{an}的前n项和对任意的n属于N*,都有Sn=(m+1)-man(m为常数,且m大于0).(2)设数列an的公比q=f(m),数列{bn}满足b1=2a1,bn=f(b(n-1))(n>=2,n属于N*).求数列{bn}的通项公式;(3)在满
题目详情
设sn为数列{an}的前n项和对任意的n属于N*,都有Sn=(m+1)-man(m为常数,且m大于0).
(2)设数列an的公比q=f(m),数列{bn}满足b1=2a1,bn=f(b(n-1))(n>=2,n属于N* ).求数列{bn}的通项公式;
(3)在满足(2)的条件下,求证:数列{bn^}的前n项和Tn
(2)设数列an的公比q=f(m),数列{bn}满足b1=2a1,bn=f(b(n-1))(n>=2,n属于N* ).求数列{bn}的通项公式;
(3)在满足(2)的条件下,求证:数列{bn^}的前n项和Tn
▼优质解答
答案和解析
(1).证:Sn=(m+1)-man Sn-1=(m+1)-ma(n-1) an=Sn-Sn-1=(m+1)-man-(m+1)+ma(n-1) (m+1)an=ma(n-1) an/a(n-1)=m/(m+1) m为常数,且m>0,分数有意义,an/a(n-1)为常数.令n=1 a1=S1=(m+1)-ma1 (1+m)a1=m+1a1=1 数列{an}为等比数列,首项为1,公比为m/(m+1).(2).q=f(m)=m/(m+1) b1=2a1=2 bn=b(n-1)/[b(n-1)+1] b2=b1/(b1+1)=2/3 b3=b2/(b2+1)=(2/3)/(2/3+1)=2/5 假设n=k时,bk=2/(2k-1),则当n=k+1时 b(k+1)=bk/(bk+1) =[2/(2k-1)]/[2/(2k-1)+1] =2/[2+(2k-1)] =2/(2k+1) =2/[2(k+1)-1] 仍然满足同样的表达式 bn=2/(2n-1)
看了 设sn为数列{an}的前n项...的网友还看了以下:
如果对于任意给定的正数总存在一个正整数N,当n>N证:对于任意给定的e>0,要使|yn-2|=|2 2020-07-09 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
设有N件产品,从中任取n件.(不放回)书上写取法共CnN,即[N(N-1)…(N-n+1)]/n! 2020-07-21 …
高中数列题(说明:"[]"中内容表示下标)以数列{a[n]}的任意相邻两项为坐标的点P[n](a[ 2020-07-29 …
已知数列an的通项和为n(n+1)而数列bn的第n项bn,等于数列an的第2的n次方既bn=A下标 2020-07-29 …
1.已知A,B,C为正数,N是正整数,且f(n)=lg[(An+Bn+Cn)/3],求证:2f(n 2020-07-30 …
一道高数题,证明f(x)=(1+1/n)^n单调递增且有上界解法里包括这样一段:将Xn=(1+1/ 2020-07-31 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
设A为n(n>2)阶矩阵,秩(A)<n-1,则秩(A*)=()A.0B.1C.n-1D.n 2020-11-11 …
已知正n边形的周长为60,把n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7 2020-11-23 …