早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知z为复数,z+2i和均为实数,其中i是虚数单位.(Ⅰ)求复数z;(Ⅱ)若复数在复平面上对应的点在第一象限,求实数a的取值范围.

题目详情
已知z为复数,z+2i和均为实数,其中i是虚数单位.
(Ⅰ)求复数z;
(Ⅱ)若复数在复平面上对应的点在第一象限,求实数a的取值范围.____
▼优质解答
答案和解析
【分析】(I)设出复数的代数形式,整理出z+2i和,根据两个都是实数虚部都等于0,得到复数的代数形式.
\n(II)根据上一问做出的复数的结果,代入复数(z+ai)2,利用复数的加减和乘方运算,写出代数的标准形式,根据复数对应的点在第一象限,写出关于实部大于0和虚部大于0,解不等式组,得到结果.
(Ⅰ)设复数z=a+bi(a,b∈R),
\n由题意,z+2i=a+bi+2i=a+(b+2)i∈R,
\n∴b+2=0,即b=-2.
\n又
\n∴2b+a=0,即a=-2b=4.∴z=4-2i.
\n(Ⅱ)由(Ⅰ)可知z=4-2i,
\n∵(z+ai)2=(4-2i+ai)2=[4+(a-2)i]2=16-(a-2)2+8(a-2)i
\n对应的点在复平面的第一象限,
\n∴
\n解得a的取值范围为2<a<6.
【点评】本题考查复数的加减乘除运算,考查复数的代数形式和几何意义,考查复数与复平面上点的对应,考查解决实际问题的能力,是一个综合题.