早教吧 育儿知识 作业答案 考试题库 百科 知识分享

正方形ABCD中,M是BC边上异于B、C的一点,E是BC的延长线上的一点,AM⊥MN且交∠DCE的平分线于N.求证:AM=MN.

题目详情
正方形ABCD中,M是BC边上异于B、C的一点,E是BC的延长线上的一点,AM⊥MN且交∠DCE的平分线于N.求证:AM=MN.
▼优质解答
答案和解析
证明:连接AC交MN于P,过M作MF∥AC交AB于F.则△ABC和△FBM均为等腰直角三角形,BF=BM;
又∵BA=BC,
∴AF=MC,
∵∠AMN=∠ACN=90°,∠APM=∠NPC,
∴∠1=∠2.
又MF∥AC,
∴∠2=∠3,
∴∠1=∠3;
又∵∠AFM=∠MCN=135°.
在△AFM和△MCN中,
∠3=∠1
∠AFM=∠MCN
AF=MC

∴△AFM≌△MCN(AAS),
∴AM=MN.