早教吧作业答案频道 -->数学-->
已知:如图在△ABC中,BD,CE为两条高线,F为BD上一点,G为CE延长线上一点,BF=AC,CG=AB.(1)请你判断△AFG的形状并证明.(2)当F为BD反向延长线上一点,G为CE反向延线上一点,其它条件不
题目详情
已知:如图在△ABC中,BD,CE为两条高线,F为BD上一点,G为CE延长线上一点,BF=AC,CG=AB.
(1)请你判断△AFG的形状并证明.
(2)当F为BD反向延长线上一点,G为CE反向延线上一点,其它条件不变,(1)中的结论是否仍然成立?请你画出图形,并证明你的结论.
(1)请你判断△AFG的形状并证明.
(2)当F为BD反向延长线上一点,G为CE反向延线上一点,其它条件不变,(1)中的结论是否仍然成立?请你画出图形,并证明你的结论.
▼优质解答
答案和解析
(1)△AFG为等腰直角三角形;
证明:∵BD、CE是△ABC的高,
∴∠ADB=∠AEC=90°,
∴∠ABF+∠BAD=90°,∠ACE+∠BAD=90°,
∴∠ABF=∠ACE,
在△ABF和△GCA中,
∴△ABF≌△GCA(SAS),
∴AF=AG,∠BAF=∠CGA,
∵∠CGA+∠GAE=90°,
∴∠BAF+∠GAE=90°,
即∠FAG=90°,
∴△AFG是等腰直角三角形;
(2)(1)中的结论成立;
证明:如图2所示:
由(1)得,∠ABF=∠ACE,
∴∠ABF=∠GCA,
在△ABF和△GCA中,
∴△ABF≌△GCA(SAS),
∴AF=AG,∠BAF=∠CGA,
∵∠ACE=∠CGA+∠CAG,∠ACE+∠EAC=90°,
∴∠BAF+∠CAG+∠EAC=90°,
即∠FAG=90°,
∴△AFG是等腰直角三角形.
证明:∵BD、CE是△ABC的高,
∴∠ADB=∠AEC=90°,
∴∠ABF+∠BAD=90°,∠ACE+∠BAD=90°,
∴∠ABF=∠ACE,
在△ABF和△GCA中,
|
∴△ABF≌△GCA(SAS),
∴AF=AG,∠BAF=∠CGA,
∵∠CGA+∠GAE=90°,
∴∠BAF+∠GAE=90°,
即∠FAG=90°,
∴△AFG是等腰直角三角形;
(2)(1)中的结论成立;
证明:如图2所示:
由(1)得,∠ABF=∠ACE,
∴∠ABF=∠GCA,
在△ABF和△GCA中,
|
∴△ABF≌△GCA(SAS),
∴AF=AG,∠BAF=∠CGA,
∵∠ACE=∠CGA+∠CAG,∠ACE+∠EAC=90°,
∴∠BAF+∠CAG+∠EAC=90°,
即∠FAG=90°,
∴△AFG是等腰直角三角形.
看了 已知:如图在△ABC中,BD...的网友还看了以下:
已知:菱形ABCD中,BD为对角线,|P,Q两点分别在AB,BD上,且满足∠PCQ=∠ABD(1) 2020-05-13 …
下列说法,正确的有:A 延长直线AB B 延长线段BC C 延长射线OA D 画直线 在射线AB上 2020-05-15 …
已知,如图,在△ABCD中,AB=AC,EF是△ABC的中位线,延长AB到D,使BD=AB,连接C 2020-05-16 …
如图所示,在平行四边形ABCD中,点E,F在BD上,且BF=DE.(1)写出图中所有你认为全等的三 2020-05-16 …
初一判断题(如果是错的,请说明原因)判断题(如果是错的,请说明原因)1.在射线AB的延长线上任取一 2020-05-17 …
下列说法中正确的是()A.射线AB和射线BA是同一条射线B.延长线段AB和延长线段BA的含义是相同 2020-07-25 …
命题与证明判断下列命题是真还是假命题,简要说明理由,不说也没关系(1)同一个角的邻补角是对顶角(2 2020-07-29 …
在正方形ABCD中,M是BC边上任意一点(不包括端点BC),P是BC延长线上一点,N是角DCP的平 2020-07-30 …
用反证法证明:如果两条直线都和第三条直线平行,那么这两条直线也平行矩形ABCD中,F是BC边上一点 2020-08-01 …
如图所示,已知C为线段AB上一动点,且M为BC的中点.(1)求证:AC+AB=2AM(2)若将条件“ 2020-12-09 …