早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正三角形ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,求AE的长.

题目详情
已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正三角形ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,求AE的长.
▼优质解答
答案和解析
如图,连接OA,OB,OD,OE,设∠CDB=x.
∵△ABC为等边三角形,
∴∠CAB=∠CBA=60°,CB=AB,
而DB=AB,
∴BC=BD,
∴∠BCD=x,
∴∠CBD=180°-2x,
∴∠ABD=∠ABC+∠CBD=60°+180°-2x=240°-2x,
易证得△OAB≌△OBD,
∴∠ABO=∠DBO,
∴∠ABO=
1
2
∠ABD=
1
2
(240°-2x)=120°-x,
而OA=OB,
∴∠OAB=∠OBA=120°-x,
又∵∠EDB+∠EAB=180°,
∴∠EAB=180°-x,
∴∠EAC=∠EAB-∠CAB=180°-x-60°=120°-x,
∴∠EAC=∠OAB,
∴∠EAO=∠BAC=60°,
而OE=OA,
∴△OAE为等边三角形,
∴AE=OA=1.