已知△ABC内角A,B,C的对边分别是a,b,c,以下说法:①在△ABC中,“a,b,c成等差数列”是“acos2C2+ccos2A2=32b”的充要条件;②命题“在锐角三角形ABC中,sinA>cosB”的逆命题和逆否命题均
已知△ABC内角A,B,C的对边分别是a,b,c,以下说法:
①在△ABC中,“a,b,c成等差数列”是“acos2
+ccos2C 2
=A 2
b”的充要条件;3 2
②命题“在锐角三角形ABC中,sinA>cosB”的逆命题和逆否命题均为真命题;
③命题“对任意三角形ABC,sinA+sinB>sinC”为假命题.
正确的个数为( )
A. 0
B. 1
C. 2
D. 3
C |
2 |
A |
2 |
3 |
2 |
即a(1+cosC)+c(1+cosA)=3b,
由正弦定理得:sinA+sinAcosC+sinC+cosAsinC=3sinB,
即sinA+sinC+sin(A+C)=3sinB,
可得sinA+sinC=2sinB,
由正弦定理可得,整理得:a+c=2b,故a,b,c为等差数列;反之也成立,
即,“a,b,c成等差数列”是“acos2
C |
2 |
A |
2 |
3 |
2 |
②在锐角三角形ABC中,则A+B>
π |
2 |
π |
2 |
π |
2 |
则sinA>SIn(B-
π |
2 |
命题“在锐角三角形ABC中,sinA>cosB”的逆命题为:若sinA>cosB,则三角形为锐角三角形,
在三角形中,当B为钝角时,cosB<0,此时满足sinA>cosB,则命题的逆否命题为假命题.,故②错误,
③在三角形中,由正弦定理得若“对任意三角形ABC,sinA+sinB>sinC”则等价为对任意三角形ABC,a+b>c成立,
即命题“对任意三角形ABC,sinA+sinB>sinC”为真命题,故③错误,
故正确的个数是1,
故选:B
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
因式分解a3(b-c)+b3(c-a)+c3(a-b)如果用待定系数法解,得a3(b-c)+b3( 2020-05-16 …
在△ABC中,已知sin[B+(C/2)]=4/5,求cos(A-B)的值.过程中有一步不懂,co 2020-06-03 …
求几题数学不等式解法一、a,b,c属于正实数,求证:根号ab(a+b)+根号bc(b+c)+根号a 2020-07-03 …
已知三角形abc三个内角ABC的对边分别是a,b,c,且c=2,角c=π╱3已知三角形ABC三个内 2020-07-18 …
为了应用平方差公式计算(a-b+c)(a+b-c),必须先适当变形,下列各变形中,正确的是()A. 2020-07-31 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
已知a,b,c>0,abc=1,求证:a^3+b^3+c^3≥ab+bc+ca由基本不等式:ab+ 2020-08-03 …
已知二次函数y=ax平方+bx+c,(1)若a=2,b+c=-2,b>c,且二次函数的图像经过点(p 2020-12-08 …
点(a+b,c)、(b+c,a)和(c+a,b)的位置关系是A.同在一条直线上B.三点间的距离两两相 2021-01-22 …