早教吧作业答案频道 -->其他-->
在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程(2)设P为平面上的点,满足:存在过点P
题目详情
在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2
,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2
3 |
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.
▼优质解答
答案和解析
(1)由于直线x=4与圆C1不相交;
∴直线l的斜率存在,设l方程为:y=k(x-4)(1分)
圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2
∴d=
=1(12分)
d=
从而k(24k+7)=0即k=0或k=-
∴直线l的方程为:y=0或7x+24y-28=0(5分)
(2)设点P(a,b)满足条件,
由题意分析可得直线l1、l2的斜率均存在且不为0,
不妨设直线l1的方程为y-b=k(x-a),k≠0
则直线l2方程为:y-b=-
(x-a)(6分)
∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,
∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等
即
=
∴直线l的斜率存在,设l方程为:y=k(x-4)(1分)
圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2
3 |
∴d=
22−(
|
d=
|1−k(−3−4)| | ||
|
7 |
24 |
∴直线l的方程为:y=0或7x+24y-28=0(5分)
(2)设点P(a,b)满足条件,
由题意分析可得直线l1、l2的斜率均存在且不为0,
不妨设直线l1的方程为y-b=k(x-a),k≠0
则直线l2方程为:y-b=-
1 |
k |
∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,
∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等
即
|1−k(−3−a)−b| | ||
|
|5+
| ||||
|
看了 在平面直角坐标系xoy中,已...的网友还看了以下:
a、b、c是不等于0的实数,且1\a+1\b=1,1\b+1\c=2,1\c+1\a=5求a2b2c 2020-03-30 …
已知a,1,c成等差数列,且a^2,1,c^2成等比数列,则log((a+c),(a^2+c^2) 2020-04-26 …
分式的加减法:已知a+b+c=0,且a,b,c均不为零.求分式1/(a^2+b^2-c^2)+1/ 2020-05-13 …
若三个数1/a,1,1/c成等差数列,且三个数a^2,1,c^2成等比数列,则a+c/a^2+c^ 2020-05-15 …
已知抛物线Y=AX^2+bx+c(a不等于0) 的顶点坐标 为Q(2,-1),且与Y轴交于 点C( 2020-05-16 …
过点p(2,3)且与直线L:x-y-2=0垂直的直线方程是过点p(2,1)且与直线L:2x+y-1 2020-05-22 …
已知函数f(x-1)的图像与函数g(x)的图像关于直线y=x对称,且g(1)=2则:A,f(1)= 2020-06-27 …
已知向量a=(3,2),b=(2,-1),c=(6,11)试用a、b表示c已知向量a=(3,2), 2020-07-25 …
1.已知a,b,c满足ab+a+b=bc+b+c=ca+c+a=3求(a+1)(b+1(c+1)的 2020-08-01 …
已知二次函数y=ax平方+bx+c,(1)若a=2,b+c=-2,b>c,且二次函数的图像经过点(p 2020-12-08 …