早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知矩形ABCD.以AD,AB为边向内做等边三角形ADE和等边三角形ABF,延长DF,BE相交于点G(1)求证:DF=BE。(2)猜想∠EGF的度数,并说明理由。(3)当点G位于对角线AC上时,求证∠DGA=∠BGA并直接写出GE与BE

题目详情
已知矩形ABCD.以AD,AB为边向内做等边三角形ADE和等边三角形ABF,延长DF,BE相交于点G(1)求证:DF=BE。(2)猜想∠EGF的度数,并说明理由。(3)当点G位于对角线AC上时,求证∠DGA=∠BGA并直接写出GE与BE的数量关系。图交代的很清楚,可自行脑部。请写出详细步骤,十分感谢。
▼优质解答
答案和解析
(1)证明:∵△ADE和△ABF都是正三角形,∴AF=AB,AD=AE,∠DAE=∠FAB=60°, ∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAF=∠EAB=30°,∴△ADF≌△ABE(SAS)∴DF=BE„„„„„„„„„„„„„„„„„„„„„„„„„„3分(2)∠EGF=120°,„„„„„„„„„„„„„„„„„„„„„„„„4分∠EGF=∠DFB-∠FBG=60°+∠AFD-∠FBG=60°+∠ABF-∠FBG60°+60°+∠FBG-∠FBG=120°,„„„„„„„„„„„6分(3)①过点A作AM⊥DG,AN⊥BG于点M、N, ∵△ADF≌△ABE(已证),∴∠DFA=∠EBA,AF=AB,又∵∠FMA=∠BNA=90°,,∴△AMF≌△ABN,„„„„„„„„„„„„8分∴AM=AN, ∵∠FMA=∠BNA=90°,∴∠DGA=∠BGA,„„„„„„„„„10分 ②3BEGE„„„„„„„„„„„„12分理由:连接EF,由题意可知AE垂直平分BF,所以EF=BE,又因∠EGF=120°,∠DGA=∠BGA(已证) 所以∠BGA=60°, 第9页共9页 由条件又可证EF⊥AC于点H,可得EH=FH,在Rt△GEH中 sinEHAGEGE ,即sin60EH GE 所以23EHGE,即3BEGE