(2014•福建)已知双曲线E:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.(1)求双曲线E的离心率;(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别
(2014•福建)已知双曲线E:-=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.
(1)求双曲线E的离心率;
(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.
答案和解析
(1)因为双曲线E的渐近线分别为l
1:y=2x,l
2:y=-2x,
所以
=2.
所以=2.
故c=a,
从而双曲线E的离心率e==.
(2)由(1)知,双曲线E的方程为-=1.
设直线l与x轴相交于点C,
当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,
所以|OC|•|AB|=8,
因此a•4a=8,解得a=2,此时双曲线E的方程为-=1.
以下证明:当直线l不与x轴垂直时,双曲线E的方程为-=1也满足条件.
设直线l的方程为y=kx+m,依题意,得k>2或k<-2;
则C(-,0),记A(x1,y1),B(x2,y2),
由
- 问题解析
- (1)依题意,可知=2,易知c=a,从而可求双曲线E的离心率;
(2)由(1)知,双曲线E的方程为-=1,设直线l与x轴相交于点C,分l⊥x轴与直线l不与x轴垂直讨论,当l⊥x轴时,易求双曲线E的方程为-=1.当直线l不与x轴垂直时,设直线l的方程为y=kx+m,与双曲线E的方程联立,利用由S△OAB=|OC|•|y1-y2|=8可证得:双曲线E的方程为-=1,从而可得答案.
- 名师点评
-
- 本题考点:
- 直线与圆锥曲线的综合问题.
-
- 考点点评:
- 本题考查双曲线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、分类讨论思想、函数与方程思想.
扫描下载二维码
|
如图,已知直线y=12x与双曲线y=kx(k>0)交于A,B两点,且点A的横坐标为4.(1)求k的 2020-06-13 …
已只直线y=1/2x与双曲线y=k/x(k>0)交A,B2点,且A的横坐标为4求1k的值2若双曲线 2020-07-12 …
如图,已知直线l分别与x轴、y轴交于A、B两点,与双曲线(a≠0,x>0)分别交于D、E两点.(1 2020-07-14 …
已知点A(0,1),点P在双曲线C:x22-y2=1上.(1)当|PA|最小时,求点P的坐标;(2 2020-07-26 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A.B两点,且点A的横坐标为4,1.求K 2020-08-01 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A.B两点,且点A的横坐标为4,1.求K 2020-08-01 …
(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值; 2020-08-01 …
1.已知双曲线C的一个焦点坐标为F(√5,0)且经过点P(√6,√2)(1)求双曲线C的标准方程( 2020-08-02 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A,B两点,且点A的横坐标为4.(1)求k 2020-12-10 …
设直线l的方程为y=kx-1,等轴双曲线C:x2-y2=a2(a>0)的中心在原点,右焦点坐标为(2 2020-12-31 …