早教吧作业答案频道 -->数学-->
在△ABC中,(b+c):(c+a):(a+b)=4:5:6,则△ABC的最大内角的度数是.
题目详情
在△ABC中,(b+c):(c+a):(a+b)=4:5:6,则△ABC的最大内角的度数是______.
▼优质解答
答案和解析
设b+c=4k,c+a=5k,a+b=6k,
三式相加得:2(a+b+c)=15k,即a+b+c=7.5k,所以a=3.5k,b=2.5k,c=1.5k,
所以A最大,根据余弦定理得:
cosA=
=
=-
,又A∈(0,180°),
所以最大内角A=120°.
故答案为:120°
三式相加得:2(a+b+c)=15k,即a+b+c=7.5k,所以a=3.5k,b=2.5k,c=1.5k,
所以A最大,根据余弦定理得:
cosA=
b2+c2−a2 |
2bc |
6.25k2+2.25k2−12.25k2 |
7.5k2 |
1 |
2 |
所以最大内角A=120°.
故答案为:120°
看了 在△ABC中,(b+c):(...的网友还看了以下:
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
第一题令A={a,b,c,d,e},B={a,b,c,d,e,f,g,h}.求a)A∪Bb)A∩B 2020-06-17 …
下列能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠C=∠C′B.∠B 2020-07-14 …
(2013•嘉兴模拟)已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0 2020-07-26 …
利用(a+b+c)^2=a^2+b^2^c^2+2ab+2ac+abc,推导(a+b+c)^2+a 2020-07-30 …
aW、bX、cC、dZ、eR是五种短周期元素,e-d=d-c=c-b=b-a=4,其中一种是常见金属 2020-11-26 …
已知a+b+c=0,abc不等于0,且a,b,c,互不相等,求证:[(b-c)/a+(c-a)/b+ 2020-12-01 …
判断下列命题的真假已知a,b,c,d∈R(1)若ac>bc,则a>b(2)若a>-b,则c-ab>c 2020-12-13 …
下列各式中与a-b-c的值不相等的是().A.a-(+b)-(-c)B.a-(+b)-(+c)C.a 2021-01-22 …