早教吧作业答案频道 -->其他-->
已知函数f(x)=(x+a)ex,其中e是自然对数的底数,a∈R.(Ⅰ)当x∈[0,4]时,函数f(x)≥e2恒成立,求实数a的取值范围;(Ⅱ)当a≠0时,求函数F(x)=af(x)的单调区间.
题目详情
已知函数f(x)=(x+a)ex,其中e是自然对数的底数,a∈R.
(Ⅰ)当x∈[0,4]时,函数f(x)≥e2恒成立,求实数a的取值范围;
(Ⅱ)当a≠0时,求函数F(x)=af(x)的单调区间.
(Ⅰ)当x∈[0,4]时,函数f(x)≥e2恒成立,求实数a的取值范围;
(Ⅱ)当a≠0时,求函数F(x)=af(x)的单调区间.
▼优质解答
答案和解析
(Ⅰ)函数的导数的为f′(x)=(x+a+1)ex,
当x∈[0,4]时,函数f(x)≥e2恒成立,等价为fmin(x)≥e2恒成立;
令f′(x)=0,解得x=-a-1,
f(x),f′(x)的情况如下:
①当-a-1≤0,即a≥-1时,f(x)在[0,4]上的最小值为f(0),
若满足题意只需f(0)≥e2,解得a≥e2;
②当0<-a-1<4,即-5<a<-1时,f(x)在[0,4]上的最小值为f(-a-1),
若满足题意只需f(-a-1))≥e2,求解可得此不等式无解,
所以a不存在;
③当-a-1≥4,即a≤-5时,f(x)在[0,4]上的最小值为f(4),
若满足题意只需需f(4)≥e2,解得(4+a)e4≥e2,
所以此时,a不存在.
综上实数a的取值范围为a≥e2;
(Ⅱ)由(Ⅰ)知,f(x)的增区间为(-a-1,+∞),单调减区间为(-∞,-a-1),
∴若a>0,函数F(x)=af(x)的单调性与f(x)的单调性相同,
若a<0,函数F(x)=af(x)的单调性与f(x)的单调性相反,
综上当a>0时,函数F(x)=af(x)的增区间为(-a-1,+∞),单调减区间为(-∞,-a-1),
当a<0时,函数F(x)=af(x)的增区间为(-∞,-a-1),F(x)=af(x)的单调减区间为(-a-1,+∞).
当x∈[0,4]时,函数f(x)≥e2恒成立,等价为fmin(x)≥e2恒成立;
令f′(x)=0,解得x=-a-1,
f(x),f′(x)的情况如下:
x | (-∞,-a-1) | -a-1 | (-a-1,+∞) |
f′(x) | - | 0 | + |
f(x) | ↘ | 极小值 | ↗ |
若满足题意只需f(0)≥e2,解得a≥e2;
②当0<-a-1<4,即-5<a<-1时,f(x)在[0,4]上的最小值为f(-a-1),
若满足题意只需f(-a-1))≥e2,求解可得此不等式无解,
所以a不存在;
③当-a-1≥4,即a≤-5时,f(x)在[0,4]上的最小值为f(4),
若满足题意只需需f(4)≥e2,解得(4+a)e4≥e2,
所以此时,a不存在.
综上实数a的取值范围为a≥e2;
(Ⅱ)由(Ⅰ)知,f(x)的增区间为(-a-1,+∞),单调减区间为(-∞,-a-1),
∴若a>0,函数F(x)=af(x)的单调性与f(x)的单调性相同,
若a<0,函数F(x)=af(x)的单调性与f(x)的单调性相反,
综上当a>0时,函数F(x)=af(x)的增区间为(-a-1,+∞),单调减区间为(-∞,-a-1),
当a<0时,函数F(x)=af(x)的增区间为(-∞,-a-1),F(x)=af(x)的单调减区间为(-a-1,+∞).
看了 已知函数f(x)=(x+a)...的网友还看了以下:
在正项等比数列中,,.(1)求数列的通项公式;(2)记,求数列的前n项和;(3)记对于(2)中的, 2020-05-13 …
在正项等比数列中,,.(1)求数列的通项公式;(2)记,求数列的前n项和;(3)记,对于(2)中的 2020-05-13 …
已知函数f(x)=x的平方加x-2设当0小于x小于二分之一时,不等式f(x)+3小于2x+a恒成立 2020-05-16 …
设函数f(x)=(x-a)^2x,a属于R(1)若x=1为函数的极值点,求实数a的值(2)求实数a 2020-06-06 …
已知函数f(x)=x^2-(m+1)x+m(m∈R)(1)若tanA,tanB是方程f(x)+4= 2020-06-22 …
已知函数g(x)=x2-ax+b,其图象对称轴为直线x=2,且g(x)的最小值为-1,设f(x)= 2020-08-01 …
已知函数f(x)=x^2-2ax+1(a属于R)在2,+00)上单调递增1)若函数y=f(2^x) 2020-08-03 …
已知函数f(x)=x^2+2x-mlnx,m属于R1当m=12时,求f(x)的最小值2.若函数f(x 2020-10-31 …
设f(x)是定义在R上的奇函数,且当x≥0时f(x)=x^2,若对任意的x属于[t,t+2],不等式 2020-11-10 …
求解3道不等式1关于x的不等式mx^2-(2m+1)x+m-1>0的解集为空集,试求m的取值范围.2 2020-12-31 …