早教吧作业答案频道 -->数学-->
轮换式:例:分解因式:(x3+y3+z3)-3xyz.分析:当x=-y-z时,原式=0,由因式定理得原多项式有因式x+y+z,再由待定系数法分解.原式为三次齐次对称式.令x=-y-z,则原式=(-y-z)3+y3+z3-3(-y-z)yz=-(y+z)3+y3+
题目详情
轮换式:
例:分解因式:(x3+y3+z3)-3xyz.
分析:当x=-y-z时,原式=0,由因式定理得原多项式有因式x+y+z,再由待定系数法分解.
原式为三次齐次对称式.
令 x=-y-z,则
原式=(-y-z)3+y3+z3-3(-y-z)yz
=-(y+z)3+y3+z3+3y2z+3yz2
=0
由因式定理得,原式有因式x+y+z,
为什么由这就可设x3+y3+z3-3xyz=(x+y+z)[k1(x2+y2+z2)+k2(xy+yz+zx)].
例:分解因式:(x3+y3+z3)-3xyz.
分析:当x=-y-z时,原式=0,由因式定理得原多项式有因式x+y+z,再由待定系数法分解.
原式为三次齐次对称式.
令 x=-y-z,则
原式=(-y-z)3+y3+z3-3(-y-z)yz
=-(y+z)3+y3+z3+3y2z+3yz2
=0
由因式定理得,原式有因式x+y+z,
为什么由这就可设x3+y3+z3-3xyz=(x+y+z)[k1(x2+y2+z2)+k2(xy+yz+zx)].
▼优质解答
答案和解析
对于x3+y3+z3-3xyz=(x+y+z)[k1(x2+y2+z2)+k2(xy+yz+zx)]这个等式,其实是用到了“待定系数法”
但是或者你会觉得等式右边为什么是这样,为什么呢,其实你要看分析,你给的分析是对的,因为只要(x+y+z)=0,(x3+y3+z3)-3xyz=0,所以(x3+y3+z3)-3xyz就有因式(x+y+z),然后为什么是[k1(x2+y2+z2)+k2(xy+yz+zx)]来乘以(x+y+z),因为一个三次的式子张开后一定有三次,二次,一次零次的多项式:三次(x3,y3,z3,xyz),二次(x2,y2,x2,xy,xz,yz) 一次(x,y,z) ,零次(常数),但是他们的系数可能是零,比如在这题中,零次项的系数肯定是零因为等式的右边本来就没有常数,就有计算右边时有常数也肯定是整对出现而且可以抵消的.然而在这题中,所有的系数除了xyz是-3外,其他的都是零,所以比较好算,只要把 (x+y+z)[k1(x2+y2+z2)+k2(xy+yz+zx)]展开,一一对应就是了.
你可以尝试其他设法.
但是或者你会觉得等式右边为什么是这样,为什么呢,其实你要看分析,你给的分析是对的,因为只要(x+y+z)=0,(x3+y3+z3)-3xyz=0,所以(x3+y3+z3)-3xyz就有因式(x+y+z),然后为什么是[k1(x2+y2+z2)+k2(xy+yz+zx)]来乘以(x+y+z),因为一个三次的式子张开后一定有三次,二次,一次零次的多项式:三次(x3,y3,z3,xyz),二次(x2,y2,x2,xy,xz,yz) 一次(x,y,z) ,零次(常数),但是他们的系数可能是零,比如在这题中,零次项的系数肯定是零因为等式的右边本来就没有常数,就有计算右边时有常数也肯定是整对出现而且可以抵消的.然而在这题中,所有的系数除了xyz是-3外,其他的都是零,所以比较好算,只要把 (x+y+z)[k1(x2+y2+z2)+k2(xy+yz+zx)]展开,一一对应就是了.
你可以尝试其他设法.
看了 轮换式:例:分解因式:(x3...的网友还看了以下:
两位同学将一个形如ax的平方+bx+c的多项式分解因式,一位同学看错了一次项系数而分解成(x-1) 2020-04-27 …
关于整式加减和乘除以及因式分解的小问题一个式子-2(X+1)(X-2)为什么2只能乘以X+1和X+ 2020-05-13 …
因式分解求根法令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x 2020-05-14 …
因式定理求根法令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x 2020-07-13 …
(x+1)^4+(x^2-1)^2+(x-1)^4分解因式项 2020-07-20 …
证明:关于x的二次三项式x^2+2x-(m-9)在实数范围内不能分解因式,关于y的多项式y^2+证 2020-07-31 …
先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解 2020-08-01 …
轮换式:例:分解因式:(x3+y3+z3)-3xyz.分析:当x=-y-z时,原式=0,由因式定理 2020-08-02 …
关于一元N次多项式的分解因式以及其他在学不等式的时候老师给我们讲了关于高次多项式分解因式的方法.比 2020-08-03 …
令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1 2020-08-03 …