早教吧 育儿知识 作业答案 考试题库 百科 知识分享

变sin的时候tan的值是什么比什么?变cos的时候呢?辅助角公式

题目详情
变sin的时候tan的值是什么比什么?
变cos的时候呢?
辅助角公式
▼优质解答
答案和解析
两角和与差的三角函数
cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化积公式
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
积化和差公式
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
倍角公式
sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2 tan(2α)=2tanα/(1-tan^2α) cot(2α)=(cot^2α-1)/(2cotα) sec(2α)=sec^2α/(1-tan^2α) csc(2α)=1/2*secα·cscα
三倍角公式
sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α) cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α) tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)
n倍角公式
sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-… cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…
半角公式
sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα) sec(α/2)=±√((2secα/(secα+1)) csc(α/2)=±√((2secα/(secα-1))
辅助角公式
Asinα+Bcosα=√(A^2+B^2)sin(α+arctan(B/A)) Asinα+Bcosα=√(A^2+B^2)cos(α-arctan(A/B))
万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2))
降幂公式
sin^2α=(1-cos(2α))/2=versin(2α)/2 cos^2α=(1+cos(2α))/2=covers(2α)/2 tan^2α=(1-cos(2α))/(1+cos(2α))
三角和的三角函数
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
其它公式
1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 csc(a)=1/sin(a) sec(a)=1/cos(a) cos30°=sin60° sin30°=cos60°
推导公式
tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=[sin(α/2)+cos(α/2)]^2