早教吧作业答案频道 -->其他-->
(2014•凉山州二模)设函数f(x)=ex,g(x)=mx+n,e是自然对数的底,m,n∈R.(Ⅰ)若m=1时方程f(x)-g(x)=0在[-1,1]上恰有两个相异实根,求n的取值范围;(Ⅱ)若F(x)=f(x)g(x),
题目详情
(2014•凉山州二模)设函数f(x)=ex,g(x)=mx+n,e是自然对数的底,m,n∈R.
(Ⅰ)若m=1时方程f(x)-g(x)=0在[-1,1]上恰有两个相异实根,求n的取值范围;
(Ⅱ)若F(x)=f(x)g(x),且n=1-m,求F(x)在[0,1]上的最大值.
(Ⅰ)若m=1时方程f(x)-g(x)=0在[-1,1]上恰有两个相异实根,求n的取值范围;
(Ⅱ)若F(x)=f(x)g(x),且n=1-m,求F(x)在[0,1]上的最大值.
▼优质解答
答案和解析
(Ⅰ)∵m=1时方程f(x)-g(x)=0在[-1,1]上恰有两个相异实根,令h(x)=f(x)-g(x),
则有
,即
,解得1<n<1+
,故n的范围为(1,1+
).
(Ⅱ)∵F(x)=f(x)g(x),且n=1-m,∴F(x)=ex(mx+1-m),∴F′(x)=ex(mx+1).
∵ex>0,∴①当m≥0时F(x)在[0,1]上单调递增,最大值为F(1)=e.
若-
<1,即m<-1,F(x)在[0,F′(x)>0,F(x)在[0,1]上单调递增,最大值为F(1)=e.
②当m<0时,由F′(x)=0求得x=-
>0.
若-
≥1,即-1≤m<0,
-
]上单调递增,F(x)在[-
,1]上单调递减,
F(x)在[0,1]上的最大值为F(-
)=0.
则有
|
|
1 |
e |
1 |
e |
(Ⅱ)∵F(x)=f(x)g(x),且n=1-m,∴F(x)=ex(mx+1-m),∴F′(x)=ex(mx+1).
∵ex>0,∴①当m≥0时F(x)在[0,1]上单调递增,最大值为F(1)=e.
若-
1 |
m |
②当m<0时,由F′(x)=0求得x=-
1 |
m |
若-
1 |
m |
-
1 |
m |
1 |
m |
F(x)在[0,1]上的最大值为F(-
1 |
m |
看了 (2014•凉山州二模)设函...的网友还看了以下:
已知点P在曲线y=4/(e^x+1)上,a为曲线在点P处的切线的倾斜角,则a的取值范围是y=4/[ 2020-04-11 …
求极限lim[cosx-e^(-x^2/2)]/x^4 其中x趋向于0.我的做法为什么错了:lim 2020-05-16 …
limx->0(e^x+e^2+e^3)/3lim(x~0)((e^x+e^2x+e^3x)/3) 2020-05-17 …
已知函数f(x)=[ax^2+(a-1)^2+a-(a-1)^2]e^x(1)若X=0为f(x)的 2020-06-03 …
∫(0,+∞)xe^x/(1+e^x)^2dx,求出来了,但是感觉不对!用定积分先求出了.最后正无 2020-06-12 …
y=4/(e的x次方+1)求导,一点不懂,第二行末尾的(e^x+1)'怎么来的?利用复合函数求导法 2020-07-21 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
[ln(x+e^x)]/x=lim(x->0)(1+e^x)/(x+e^x)怎么得到的?原题limx 2020-11-01 …
已知函数f(x)=e^x—x—1.(I)若函数g(x)=—e^x+x+a+1,x属于[—1,ln已知 2020-12-08 …
设函数f(x)=e^x-1-x-ax^2若当x>=0时,f(x)>=0,求a的取值范围我做的过程是令 2020-12-27 …