早教吧作业答案频道 -->数学-->
已知函数f(x)=aex-12x2-x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+(e-2)y-1=0垂直,求f(x)的单调区间;(2)若函数f(x)有两个极值点,求实
题目详情
已知函数f(x)=aex-
x2-x(a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+(e-2)y-1=0垂直,求f(x)的单调区间;
(2)若函数f(x)有两个极值点,求实数a的取值范围;
(3)证明:当x>1时,exlnx>x-
.
1 |
2 |
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+(e-2)y-1=0垂直,求f(x)的单调区间;
(2)若函数f(x)有两个极值点,求实数a的取值范围;
(3)证明:当x>1时,exlnx>x-
1 |
x |
▼优质解答
答案和解析
(1)f(x)=aex-
x2-x的导数f′(x)=aex-x-1,
可得曲线y=f(x)在点(1,f(1))处的切线斜率为ae-2,
由切线与直线x+(e-2)y-1=0垂直,可得(ae-2)•(-
)=-1,
解得a=1,即f(x)=ex-
x2-x的导数f′(x)=ex-x-1,
令g(x)=ex-x-1,g′(x)=ex-1,
当x>0时,g′(x)>0,g(x)递增;当x<0时,g′(x)<0,g(x)递减.
即有g(x)≥g(0)=0,即有f′(x)≥0,
则f(x)的单调增区间为(-∞,+∞);
(2)解法一、由f′(x)=aex-x-1,
函数f(x)有两个极值点,即为h(x)=aex-x-1有两个零点,
h′(x)=aex-1,当a≤0时,h′(x)<0,h(x)递减,h(x)不可能有两个零点;
当a>0时,令h′(x)=0,可得x=-lna,
当x>-lna时,h′(x)>0,h(x)递增;当x<-lna时,h′(x)<0,h(x)递减.
可得x=-lna处h(x)有极小值也为最小值,
若函数h(x)有两个零点,则h(-lna)<0,即lna<0,即有0<a<1;
解法二、由f′(x)=aex-x-1,
函数f(x)有两个极值点,即为f′(x)=aex-x-1=0有两个不等的实根,
即有a=
有两个不等实根.
令h(x)=
,h′(x)=
,
当x>0时,h′(x)<0,h(x)递减;当x<0时,h′(x)>0,h(x)递增.
h(x)在x=0处取得最大值1,
当x>0时,h(x)>0,x→+∞,h(x)→0,
当x≤0时,h(0)=1,h(-2)=-e2<0,结合h(x)在(-∞,0)递增,可得h(x)在(-∞,0)只有一个零点;
故0<a<1.
(3)证明:由(1)可得x>1时,ex>x+1>0,lnx>0,
即有exlnx>(x+1)lnx,
设φ(x)=(x+1)lnx-x+
,φ′(x)=lnx+
-1-
=lnx+
(1-
)>0(x>1),
所以φ(x)在(1,+∞)递增,即有φ(x)>φ(1)=0,
即(x+1)lnx>x-
,
故当x>1时,exlnx>x-
.
1 |
2 |
可得曲线y=f(x)在点(1,f(1))处的切线斜率为ae-2,
由切线与直线x+(e-2)y-1=0垂直,可得(ae-2)•(-
1 |
e-2 |
解得a=1,即f(x)=ex-
1 |
2 |
令g(x)=ex-x-1,g′(x)=ex-1,
当x>0时,g′(x)>0,g(x)递增;当x<0时,g′(x)<0,g(x)递减.
即有g(x)≥g(0)=0,即有f′(x)≥0,
则f(x)的单调增区间为(-∞,+∞);
(2)解法一、由f′(x)=aex-x-1,
函数f(x)有两个极值点,即为h(x)=aex-x-1有两个零点,
h′(x)=aex-1,当a≤0时,h′(x)<0,h(x)递减,h(x)不可能有两个零点;
当a>0时,令h′(x)=0,可得x=-lna,
当x>-lna时,h′(x)>0,h(x)递增;当x<-lna时,h′(x)<0,h(x)递减.
可得x=-lna处h(x)有极小值也为最小值,
若函数h(x)有两个零点,则h(-lna)<0,即lna<0,即有0<a<1;
解法二、由f′(x)=aex-x-1,
函数f(x)有两个极值点,即为f′(x)=aex-x-1=0有两个不等的实根,
即有a=
x+1 |
ex |
令h(x)=
x+1 |
ex |
-x |
ex |
当x>0时,h′(x)<0,h(x)递减;当x<0时,h′(x)>0,h(x)递增.
h(x)在x=0处取得最大值1,
当x>0时,h(x)>0,x→+∞,h(x)→0,
当x≤0时,h(0)=1,h(-2)=-e2<0,结合h(x)在(-∞,0)递增,可得h(x)在(-∞,0)只有一个零点;
故0<a<1.
(3)证明:由(1)可得x>1时,ex>x+1>0,lnx>0,
即有exlnx>(x+1)lnx,
设φ(x)=(x+1)lnx-x+
1 |
x |
x+1 |
x |
1 |
x2 |
1 |
x |
1 |
x |
所以φ(x)在(1,+∞)递增,即有φ(x)>φ(1)=0,
即(x+1)lnx>x-
1 |
x |
故当x>1时,exlnx>x-
1 |
x |
看了 已知函数f(x)=aex-1...的网友还看了以下:
成法公式1.x+y=1,x³+y³=1/3,求x的五次方+y的五次方的值.2.已知a+b=1,a²+ 2020-03-30 …
已知(x减1)(x加1)等于x的平方减1,(x减1)(x的平方加x加1)等于x的3次方减1,(x减 2020-05-14 …
已知x²-2x-3=0,求x³+x²-9x-8的值.∵x²-2x-3=0,∴x²=2x+3∴x³+ 2020-05-14 …
已知x的-1次方-y的-1次方成反比例.求证x不等于-y时,(x+y)²与x²+y²成正比例. 2020-05-16 …
已知根号x=根号a-(1/根号a),求(x+2+根号4x+x^2)/(x+2-根号4x+x^2)的 2020-05-16 …
(1)已知x>-1,n∈N*,求证:(1+x)n≥1+nx(2)已知m>0,n∈N*,ex≥m+n 2020-05-17 …
已知x²-4x-1=0,求代数式(2x-3)²-(x+y)(x-y)-y²求大神帮忙 已知x²-4 2020-05-17 …
已知x*x+2x-1=0,试求X2+1/x2的值.已知x²+2x-1=0,试求X²+(1/x²)的 2020-05-21 …
X+1/X=a问X^n+1/X^n=?是我们数学老师提出的:已知X+1/X=a问X^n+1/X^n 2020-06-05 …
1.已知x²-5x+1=0,求x²+1/x²的值2.已知:x(x-1)-(x²-y)=-2,求x² 2020-06-05 …