早教吧作业答案频道 -->其他-->
已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函
题目详情
已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的
已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.
已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.
▼优质解答
答案和解析
(1)由f(x)=ex-ax2-bx-1,得g(x)=f′(x)=ex-2ax-b,所以g′(x)=ex-2a.
当x∈[0,1]时,g′(x)∈[1-2a,e-2a].
当a≤
时,g′(x)≥0,所以g(x)在[0,1]上单调递增,
因此g(x)在[0,1]上的最小值是g(0)=1-b;
当a≥
时,g′(x)≤0,所以g(x)在[0,1]上单调递减,
因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;
当
<a<
时,令g′(x)=0,得x=ln(2a)∈(0,1),
所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,
于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.
综上所述,当a≤
时,g(x)在[0,1]上的最小值是g(0)=1-b;
当
<a<
时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;
当a≥
时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.…(5分)
(2)证明:设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,
f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.
则g(x)不可能恒为正,也不可能恒为负.
故g(x)在区间(0,x0)内存在零点x1.
同理g(x)在区间(x0,1)内存在零点x2.故g(x)在区间(0,1)内至少有两个零点,
由(1)知,当a≤
时,g(x)在[0,1]递增,故g(x)在(0,1)内至多有1个零点,
当a≥
时,g(x)在[0,1]递减,故g(x)在(0,1)内至多有1个零点,都不合题意,
所以
<a<
,
此时,g(x)在区间[0,ln(2a)]递减,在区间(ln(2a),1)递增,
因此x1∈(0,ln(2a)),x2∈(ln(2a),1),必有:g(0)=1-b>0,g(1)=e-2a-b>0,
由f(1)=0,得a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得:e-2<a<1,
所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.
当x∈[0,1]时,g′(x)∈[1-2a,e-2a].
当a≤
1 |
2 |
因此g(x)在[0,1]上的最小值是g(0)=1-b;
当a≥
e |
2 |
因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;
当
1 |
2 |
e |
2 |
所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,
于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.
综上所述,当a≤
1 |
2 |
当
1 |
2 |
e |
2 |
当a≥
e |
2 |
(2)证明:设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,
f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.
则g(x)不可能恒为正,也不可能恒为负.
故g(x)在区间(0,x0)内存在零点x1.
同理g(x)在区间(x0,1)内存在零点x2.故g(x)在区间(0,1)内至少有两个零点,
由(1)知,当a≤
1 |
2 |
当a≥
e |
2 |
所以
1 |
2 |
e |
2 |
此时,g(x)在区间[0,ln(2a)]递减,在区间(ln(2a),1)递增,
因此x1∈(0,ln(2a)),x2∈(ln(2a),1),必有:g(0)=1-b>0,g(1)=e-2a-b>0,
由f(1)=0,得a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得:e-2<a<1,
所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.
看了 已知函数f(x)=ex-ax...的网友还看了以下:
已知函数y=f(x)是定义域为R的指数函数.(Ⅰ)若f(2)=14,求函数f(x)的解析式;(Ⅱ) 2020-05-02 …
高中数学函数导数问题已知函数f(x)=2ae^x+1,g(x)=lnx-lna+1-ln2,其中a 2020-05-14 …
函数1/(LNX)有没有反导函数,如果没有,为什么,如果有,是什么自然对数的倒数函数(1/LNX能 2020-06-18 …
定积分-对数函数面积函数y=log2X和函数log2(x-2)(注:都是以2为底的对数函数)的图像 2020-07-10 …
怎么学习导数函数高中的导数函数怎么学啊,感觉一团糟.初中交的函数都没学会,在中考拖了数学的后退.现 2020-07-12 …
奇偶函数与对数函数的运用.已知函数f(x)=㏒₂(2+x)+a·㏒₂(2-x)为奇函数.(1)求a 2020-08-01 …
同底的对数函数和指数函数的图像有几个交点..分别求出.记错了..是指数函数与幂函数...2的X次方 2020-08-01 …
还是函数.下一个编写函数unsignedfun(unsignedw),w是大于10的无符号整数,若 2020-08-01 …
满足增函数、极限存在(渐进线为Y=a)的函数模型求一个函数模型:要求增函数、渐近线为Y=a,另加: 2020-08-01 …
对数函数怎么会定义在负无穷到零这个区间?对数函数定义域不是只在0到正无穷吗?回答一下这是为什么.有 2020-08-02 …