早教吧作业答案频道 -->其他-->
已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函
题目详情
已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的
已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.
已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.
▼优质解答
答案和解析
(1)由f(x)=ex-ax2-bx-1,得g(x)=f′(x)=ex-2ax-b,所以g′(x)=ex-2a.
当x∈[0,1]时,g′(x)∈[1-2a,e-2a].
当a≤
时,g′(x)≥0,所以g(x)在[0,1]上单调递增,
因此g(x)在[0,1]上的最小值是g(0)=1-b;
当a≥
时,g′(x)≤0,所以g(x)在[0,1]上单调递减,
因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;
当
<a<
时,令g′(x)=0,得x=ln(2a)∈(0,1),
所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,
于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.
综上所述,当a≤
时,g(x)在[0,1]上的最小值是g(0)=1-b;
当
<a<
时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;
当a≥
时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.…(5分)
(2)证明:设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,
f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.
则g(x)不可能恒为正,也不可能恒为负.
故g(x)在区间(0,x0)内存在零点x1.
同理g(x)在区间(x0,1)内存在零点x2.故g(x)在区间(0,1)内至少有两个零点,
由(1)知,当a≤
时,g(x)在[0,1]递增,故g(x)在(0,1)内至多有1个零点,
当a≥
时,g(x)在[0,1]递减,故g(x)在(0,1)内至多有1个零点,都不合题意,
所以
<a<
,
此时,g(x)在区间[0,ln(2a)]递减,在区间(ln(2a),1)递增,
因此x1∈(0,ln(2a)),x2∈(ln(2a),1),必有:g(0)=1-b>0,g(1)=e-2a-b>0,
由f(1)=0,得a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得:e-2<a<1,
所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.
当x∈[0,1]时,g′(x)∈[1-2a,e-2a].
当a≤
1 |
2 |
因此g(x)在[0,1]上的最小值是g(0)=1-b;
当a≥
e |
2 |
因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;
当
1 |
2 |
e |
2 |
所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,
于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.
综上所述,当a≤
1 |
2 |
当
1 |
2 |
e |
2 |
当a≥
e |
2 |
(2)证明:设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,
f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.
则g(x)不可能恒为正,也不可能恒为负.
故g(x)在区间(0,x0)内存在零点x1.
同理g(x)在区间(x0,1)内存在零点x2.故g(x)在区间(0,1)内至少有两个零点,
由(1)知,当a≤
1 |
2 |
当a≥
e |
2 |
所以
1 |
2 |
e |
2 |
此时,g(x)在区间[0,ln(2a)]递减,在区间(ln(2a),1)递增,
因此x1∈(0,ln(2a)),x2∈(ln(2a),1),必有:g(0)=1-b>0,g(1)=e-2a-b>0,
由f(1)=0,得a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得:e-2<a<1,
所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.
看了 已知函数f(x)=ex-ax...的网友还看了以下:
已知函数f(x)及其导数f′(x),若存在x0,使得f′(x0)=f(x0),则称x0是f(x)的 2020-05-14 …
f''(x)+f'(x)/x=lnx/x求f(x)?这个是关于曲线积分中的一道题若f(x)满足积分 2020-05-20 …
f(x)具有二阶连续导数和f(x)具有连续的二阶导数有什么区别y=f(2x),其中f(x)具有二阶 2020-05-21 …
f(x)=0,求其奇偶性书上是这样答:因为f(-x)=-f(x)=f(x)=0所以这个函数既是奇函 2020-06-09 …
设方程F(x+z,xy,z)=0确定了隐函数z=z(x,y),其中F具有连续一阶偏导数,求δz/. 2020-06-27 …
matlab 帮我解两个方程 待定系数法:f(x)=[1+a(x-b)^(-2)]^(-1)其中 2020-06-27 …
设z=z(x,y)是由方程f(x-z,y-z)=0所确定的隐函数,其中f(u,v)具有连续的偏导数 2020-07-18 …
正整数可以分为两个互不相交的正整数子集:{f(1),f(2),f(3)...f(n)...};{g 2020-07-20 …
质量为m的木块放在光滑水平面上,水平恒力为F作用于该木块上,使其沿力F的方向移动了位移s,在这过程中 2020-10-31 …
设z=z(x,y)是由f(x-z,y-z)=0确定的隐函数,其中f有二阶连续偏导数,且f1′+f2′ 2020-11-01 …