早教吧作业答案频道 -->数学-->
在△ABC中,角A、B、C所对的边分别是a、b、c,若b-c=2acos(π/3+C),求角ASinC/c=SinA/a;2acos(π/3+C)=a*CosC-2a*Sin(π/3)*SinC=a*CosC-2c*Sin(π/3)*SinA;余弦定理得CosC=(a^2+b^2-c^2)/2ab因此b-c=(a^2+b^2-c^2)/2b-2c*Sin(π/3)*
题目详情
在△ABC中,角A、B、C所对的边分别是a、b、c,若b-c=2acos(π/3+C),求角A
SinC/c = SinA/a;
2acos(π/3+C) = a*CosC-2a*Sin(π/3)*SinC=a*CosC-2c*Sin(π/3)*SinA;
余弦定理得 CosC=(a^2+b^2-c^2)/2ab
因此 b-c=(a^2+b^2-c^2)/2b-2c*Sin(π/3)*SinA;
(b^2+c^2-a^2)/2bc + 2*Sin(π/3)*SinA=1; (这步怎么得到的)
CosA+2*Sin(π/3)*SinA=1;
Cos(π/3)*CosA+Sin(π/3)*SinA=0.5;
因为在三角形中,所以
Cos(A-π/3)=0.5;
A - π/3= π/3;
A=2*π/3;
SinC/c = SinA/a;
2acos(π/3+C) = a*CosC-2a*Sin(π/3)*SinC=a*CosC-2c*Sin(π/3)*SinA;
余弦定理得 CosC=(a^2+b^2-c^2)/2ab
因此 b-c=(a^2+b^2-c^2)/2b-2c*Sin(π/3)*SinA;
(b^2+c^2-a^2)/2bc + 2*Sin(π/3)*SinA=1; (这步怎么得到的)
CosA+2*Sin(π/3)*SinA=1;
Cos(π/3)*CosA+Sin(π/3)*SinA=0.5;
因为在三角形中,所以
Cos(A-π/3)=0.5;
A - π/3= π/3;
A=2*π/3;
▼优质解答
答案和解析
因此 b-c=(a^2+b^2-c^2)/2b-2c*Sin(π/3)*SinA; (两边同时除以c,移项,通分整理即可)
(b^2+c^2-a^2)/2bc + 2*Sin(π/3)*SinA=1; (这步怎么得到的)
(b^2+c^2-a^2)/2bc + 2*Sin(π/3)*SinA=1; (这步怎么得到的)
看了 在△ABC中,角A、B、C所...的网友还看了以下:
已知a,b,c均为整数,且a-b的绝对值的三次方+c-a的绝对值的平方=1,求a-c的绝对值+c- 2020-04-05 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
matlab解中学三角函数方程数学题,不会求大大~~~~~~~~~~[a,b,c,A,B,C]=s 2020-05-14 …
已知a,b,c均为整数,且a-b的绝对值的三次方+c-a的绝对值的平方=1,求a-c的绝对值+c- 2020-06-24 …
用向量证明余弦定理a、b、c都表示向量,|a|、|b|、|c|表示向量的模因为a=b-c所以a^2 2020-07-07 …
已知△ABC的三个内角A,B,C所对的边分别为a,b,c,若b-a=c-b=1且C=2A,求cos 2020-07-18 …
1:设a,b,c都是正数,且3的a次方=4的b次方=6的c次方,则:()A.1/c=(1/a)+( 2020-07-30 …
35.a+b+c=26;(A)证明:(1)a、b、c成等比数列,且a,b+4,c成等差数列=/=> 2020-07-30 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
1在三角形ABC中,三个内角ABC所对的边分别为abc,并且满足COSB+COSC=b/c+c/a试 2020-11-24 …