早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设圆的方程为x^2+y^2=4,过点M(0,1)的直线l交圆于A、B,O是坐标原点,点P为AB中点,当l绕点M旋转时,求动点P的运动轨迹.

题目详情
设圆的方程为x^2+y^2=4,过点M(0,1)的直线 l 交圆于A、B ,O是坐标原点,点P为AB中点,当 l 绕点M旋转时,求动点P的运动轨迹.
▼优质解答
答案和解析
p是AB的中点吧,圆锥曲线的弦中点轨迹方程求法如下
设A(x1,y1) B(x2,y2) P(x,y);
那么x1+x2=2x;y1+y2=2y;
于是
x1²+y1²/4=1
x2²+y2²/4=1
两式相减得到
(x1+x2)(x1-x2)+(y1+y2)(y1-y2)/4=0;
于是有k=(y1-y2)/(x1-x2)=-4(x1+x2)/(y1+y2)=-4x/y;
另外直线过定点N(0,1)
k=(y-1)/x=-4x/y
所以P点轨迹方程就是y²-y+4x²=0
(y-1/2)²+4x²=1/4 (0,1)点在椭圆内部,就不讨论x,y 的范围了