早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如果实数a,b满足条件a2+b2=1,|1-2a+b|+2a+1=b2-a2,则a+b=.

题目详情
如果实数a,b满足条件a2+b2=1,|1-2a+b|+2a+1=b2-a2,则a+b=______.
▼优质解答
答案和解析
∵a2+b2=1,|1-2a+b|+2a+1=b2-a2,设a=sinx,b=cosx,
∴得|1-2sinx+cosx|+2sinx+1=(cosx)2-(sinx)2,即|1-2sinx+cosx|=-2sinx-2(sinx)2,可知sinx≤0,
∵-1≤cosx≤1,
∴1-2sinx+cosx≥0,故得1-2sinx+cosx+2sinx+1=(cosx)2-(sinx)2,即 2(cosx)2-cosx-3=0,
即(2cosx-3)(cosx+1)=0
又∵-1≤cosx≤1,
∴cosx=-1,所以sinx=0,故a+b=cosx+sinx=-1,
故答案为-1.