早教吧作业答案频道 -->数学-->
无穷数列an中,a1=1,an=√(an-1)^2+4,(n>=2,n属于N*)已知数列{an}中,a1=1,an=√a(n-1)^2+4.(n≥2,n属于N*)(1)求{an}的通项公式(2)设bn=1/an+a(n+1),求{bn}的前100项和(3)求lim(a(n+2)-a(n+1))/(a(n+1)-an)
题目详情
无穷数列an中,a1=1,an=√(an-1)^2+4,(n>=2,n属于N*)
已知数列{an}中,a1=1,an=√a(n-1)^2+4.(n≥2,n属于N*)(1)求{an}的通项公式(2)设bn=1/an+a(n+1),求 {bn}的前100项和
(3)求lim(a(n+2)-a(n+1))/(a(n+1)-an)
已知数列{an}中,a1=1,an=√a(n-1)^2+4.(n≥2,n属于N*)(1)求{an}的通项公式(2)设bn=1/an+a(n+1),求 {bn}的前100项和
(3)求lim(a(n+2)-a(n+1))/(a(n+1)-an)
▼优质解答
答案和解析
(1)
an=√[(a(n-1))^2+4]
(an)^2 - (a(n-1))^2=4
{ (an)^2} 是等差数列, d=4
(an)^2 - (a1)^2=4(n-1)
(an)^2 = 4n-3
an = √(4n-3)
(2)
bn = 1/(an +a(n+1) )
=1/(√(4n-3) + √(4n+1) )
= [√(4n+1)-√(4n-3) ] / 4
b1+b2+...+b100
= [√(4(100)+1)-√(4-3) ] / 4
= [√401-1 ] / 4
(3)
lim(n->∞)(a(n+2)-a(n+1))/(a(n+1)-an)
=lim(n->∞)[ √(4n+4) -√(4n+1)]/[√(4n+1)-√(4n-3) ]
consider
lim(x->∞)[ √(4x+4) -√(4x+1)]/[√(4x+1)-√(4x-3) ]
=lim(x->∞)[ √(4+4/x) -√(4+1/x)]/[√(4+1/x)-√(4-3/x) ] (0/0)
=lim(x->∞){ (-4/[2x^2.√(4+4/x)]) +1/[2x^2.√(4+1/x)] }/{-1/[2x^2.(4+1/x)]-3/[2x^2.√(4-3/x) ]}
=lim(x->∞){ (-4/[2.√(4+4/x)]) +1/[2.√(4+1/x)] }/{-1/[2.√(4+1/x)]-3/[2.√(4-3/x) ]}
=( -1+1)/(-1/4-3/4)
=0
lim(n->∞)(a(n+2)-a(n+1))/(a(n+1)-an)
=lim(n->∞)[ √(4n+4) -√(4n+1)]/[√(4n+1)-√(4n-3) ]
=0
an=√[(a(n-1))^2+4]
(an)^2 - (a(n-1))^2=4
{ (an)^2} 是等差数列, d=4
(an)^2 - (a1)^2=4(n-1)
(an)^2 = 4n-3
an = √(4n-3)
(2)
bn = 1/(an +a(n+1) )
=1/(√(4n-3) + √(4n+1) )
= [√(4n+1)-√(4n-3) ] / 4
b1+b2+...+b100
= [√(4(100)+1)-√(4-3) ] / 4
= [√401-1 ] / 4
(3)
lim(n->∞)(a(n+2)-a(n+1))/(a(n+1)-an)
=lim(n->∞)[ √(4n+4) -√(4n+1)]/[√(4n+1)-√(4n-3) ]
consider
lim(x->∞)[ √(4x+4) -√(4x+1)]/[√(4x+1)-√(4x-3) ]
=lim(x->∞)[ √(4+4/x) -√(4+1/x)]/[√(4+1/x)-√(4-3/x) ] (0/0)
=lim(x->∞){ (-4/[2x^2.√(4+4/x)]) +1/[2x^2.√(4+1/x)] }/{-1/[2x^2.(4+1/x)]-3/[2x^2.√(4-3/x) ]}
=lim(x->∞){ (-4/[2.√(4+4/x)]) +1/[2.√(4+1/x)] }/{-1/[2.√(4+1/x)]-3/[2.√(4-3/x) ]}
=( -1+1)/(-1/4-3/4)
=0
lim(n->∞)(a(n+2)-a(n+1))/(a(n+1)-an)
=lim(n->∞)[ √(4n+4) -√(4n+1)]/[√(4n+1)-√(4n-3) ]
=0
看了 无穷数列an中,a1=1,a...的网友还看了以下:
首项为1,公比为3分之1的等比数列为什么a(n)-a(n-1)=(1/3)^(n-1)已知数列{an 2020-03-30 …
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
在等差数列an中,有下述结论:若a1+a2+……+a50=s,a(n-49)+a(n-48)+…… 2020-05-14 …
在平面直角坐标系中,An(n,an),Bn(n,bn),Cn(n-1,0)(n是N*)满足向量An 2020-06-27 …
1、a1=14a2=-2a(n+2)=2a(n+1)+15an若{a(n+1)+k*an}是等比数 2020-07-09 …
已知{an}是公比q>-1(q≠0)的等比数列,a1>0,bn=a(n+1)+a(n+2),An= 2020-07-29 …
一、已知数集M满足条件:若a∈M,则(1+a)/(1-a)∈M(a≠0,a≠±1)(1)若3∈M, 2020-07-30 …
等比数列,求通项公式,((在线等待))!(1)已知,A1=1,An-A(n-1)=1/n(n-1) 2020-08-02 …
设数列{an}满足a(n+1)=2an+n^2-4n+1.(1)若a1=3,求证:存在f(n)=an 2020-11-19 …
1.数列an满足a1=1,且Sn=2an+n,求数列an的通项公式.1.数列an满足a1=1,且Sn 2020-12-05 …