求由抛物线y^2=x和直线x-y=0所围成的平面图形分别绕x轴和y轴旋转一周而得的转体的体积
求由抛物线y²=x和直线x-y=0所围成的平面图形分别绕x轴和y轴旋转一周而得的转体的体积
抛物线y²=x与直线y=x相交于(1,1).
绕x轴旋转一周所得旋转体的体积V₁=[0,1]π∫[(√x)²-x²]dx=[0,1]π∫[(x-x²)dx=π[x²/2-x³/3]︱[0,1]
=π(1/2-1/3)=π/6
绕y轴旋转一周所得旋转体的体积V₂=[0,1]π∫[y²-y⁴)dy=π[y³/3-(1/5)(y^5)]︱[0,1]=π[1/3-1/5]
=2π/15.
已知M是反比例函数y=x分之k(k≠0)图象上一点.过点M分别向x轴和y轴引垂线,如果它们与已知M 2020-04-08 …
已知P是抛物线y=2倍(x-2)的平方的对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x 2020-05-16 …
直线AB:y=-x-b分别与x、y轴交于A (6,0)、B两点,过点B的直线交x轴负半轴于C,且O 2020-05-17 …
已知如图,Rt△ABC的两直角边OA,OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点已知如 2020-06-27 …
函数y=-3/4x-3的图像分别交x轴y轴于A,C两点.(1)在x轴上找点B,使△ACB∽△AOC 2020-07-20 …
如图:直线y=-x+18分别与x轴、y轴交于A、B两点;直线y=2x分别与AB交于C点,与过点A且 2020-07-20 …
在坐标平面中,直线y=x+5分别交x轴、y轴于A、B,直线y=-2x+20分别交x轴、y轴于C、D 2020-07-30 …
y=1/2x的图像,判断P(-2,3)、Q(4,2)是否为图像上点2.分别求直线y-8=5(x-1 2020-07-30 …
如图,直线y=二分之一x+1分别与x轴、y轴交于点A、B直线y=x+b分别与x轴、y轴交于点C、D直 2020-11-01 …
P是抛物线y=2(x-2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B 2020-11-04 …