早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)在平行四边形ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF.(2)如图所示,△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC=3.求线段AD的长.

题目详情
(1)在平行四边形ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF.
(2)如图所示,△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC=
3
.求线段AD的长.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD∥BC,
∵BE=DF,
∴AF=CE,
∴四边形AECF是平行四边形,
∴AE=CF.

(2)∵△ABC中,∠C=90°,∠B=30°,
∴∠BAC=60°,
∵AD是△ABC的角平分线,
∴∠CAD=30°,
∴在Rt△ADC中,AD=
AC
cos30°
=
3
3
2
=2.