早教吧 育儿知识 作业答案 考试题库 百科 知识分享

,求异面直线A1M和C1D1所成角的正切值;(2)是否存在这样的点M使得BM⊥平面A1B1M?若存在,求出C1M的长;若不存在,请说明理由.

题目详情
,求异面直线A1M和C1D1所成角的正切值;
(2)是否存在这样的点M使得BM⊥平面A1B1M?若存在,求出C1M的长;若不存在,请说明理由.
▼优质解答
答案和解析
(1)过点M作MN∥C1D,交D1D于N,连接A1N,=
∴tan∠A1MN==
由此可得,当时,异面直线A1M和C1D1所成角的正切值为
(2)∵A1B1⊥平面BB1C1C,BM⊆平面BB1C1C,
∴A1B1⊥BM,
因此可得:只要B1M⊥BM,就有BM⊥平面A1B1M.
假设存在M点,使得BM⊥平面A1B1M,设C1M=x
则矩形BB1C1C中,B1M⊥BM,所以∠MB1C1=∠MBB1
∴Rt△B1MB∽Rt△MB1C1,所以=
∴B1M2=B1B•C1M,可得4+x2=5x,解之得x=1或4
∴当C1M的长为1或4时,存在点M使得BM⊥平面A1B1M.