早教吧作业答案频道 -->数学-->
一个高数的困惑为什么满足方程组F(x,y,z)=0G(x,y,z)=0的所有曲面束为F(x,y,z)+aG(x,y,z)=0,怎么保证它包含了所有满足条件的曲面
题目详情
一个高数的困惑
为什么满足方程组F(x,y,z)=0 G(x,y,z)=0的所有曲面束为F(x,y,z)+aG(x,y,z)=0,怎么保证它包含了所有满足条件的曲面
为什么满足方程组F(x,y,z)=0 G(x,y,z)=0的所有曲面束为F(x,y,z)+aG(x,y,z)=0,怎么保证它包含了所有满足条件的曲面
▼优质解答
答案和解析
你的问法是不是有问题啊,你想知道的可能是下面我说的.
这个方法我给别人解答题目时用的,你可以看下.我是从平面的角度去解释至于曲面就有待研究了.
他的题目是:求过直线 2x-y-2z+1=0与x+y+4z-2=0且在y轴和z轴有相同的非零截距的平面方程
该题的直线是两个平面的交线,所以呢我们可以这样来假定过该直线的所有平面,如:2X-Y-2Z+1+a(X+Y+4Z-2)=0,其中a是一个变量,然后根据截距相等就可求出a,然后化简即可.这是我从复习书上看的方法.如果你知道这方法就不用看我的解释了.(如下)
至于为什么可以这样,我的理解是:你看啊,这条直线肯定是垂直于这两个平面的法线,这两平面的法线分别是这两平面方程XYZ前面的常数,那么我们要求的平面也是过这条直线的,它的法线也是与该直线垂直的,则这三个平面的法线是在一个平面内的(因为都垂直与同一条直线).你要知道,记得不知道是什么时候学的定理,在一平面内,两任意不重合的向量可以表示该平面内任意的其他向量.那么上面的待求平面的法线也是如此,而法线向量又正好是平面方程中XYZ前的系数,因此就把所求平面方程设为含一未知量的形式.
这个方法我给别人解答题目时用的,你可以看下.我是从平面的角度去解释至于曲面就有待研究了.
他的题目是:求过直线 2x-y-2z+1=0与x+y+4z-2=0且在y轴和z轴有相同的非零截距的平面方程
该题的直线是两个平面的交线,所以呢我们可以这样来假定过该直线的所有平面,如:2X-Y-2Z+1+a(X+Y+4Z-2)=0,其中a是一个变量,然后根据截距相等就可求出a,然后化简即可.这是我从复习书上看的方法.如果你知道这方法就不用看我的解释了.(如下)
至于为什么可以这样,我的理解是:你看啊,这条直线肯定是垂直于这两个平面的法线,这两平面的法线分别是这两平面方程XYZ前面的常数,那么我们要求的平面也是过这条直线的,它的法线也是与该直线垂直的,则这三个平面的法线是在一个平面内的(因为都垂直与同一条直线).你要知道,记得不知道是什么时候学的定理,在一平面内,两任意不重合的向量可以表示该平面内任意的其他向量.那么上面的待求平面的法线也是如此,而法线向量又正好是平面方程中XYZ前的系数,因此就把所求平面方程设为含一未知量的形式.
看了 一个高数的困惑为什么满足方程...的网友还看了以下:
关于偏导数的一点疑惑z=f(u,v,x),u=φ(x,y),v=ψ(y)都是可微函数.书上说记号∂ 2020-05-15 …
求两个例子1.z=f(x,y)在一点处可微分但偏导数不连续2.z=f(x,y)的两个二阶混合偏导数 2020-05-16 …
设函数f(u)具有二阶导数,而z=f((e^x)*sin(y))满足方程d^2(z)/d^2(x^ 2020-05-16 …
关于多元函数求导的一道题费解中设Z=F[x^2+y^2,g(x,y)],其中f有二阶连续偏导数,g 2020-05-17 …
设f(x)为连续函数,f(0)=a,F(t)=∫∫∫Ω{z-f(x^2+y^2+z^2)]dv,其 2020-06-15 …
多元复合函数求导时z=f{x,y}偏Z/偏X与偏f/偏X不同到底不同在哪多元复合函数求导时z=f{ 2020-07-13 …
求极值和最值一、设z=z(x,y)是由x²-6xy+10y²-2yz-z²+18=0确定的函数,求 2020-07-31 …
求复变高手指教,以下的说法是否正确若f(z)在a的某个邻域内可导,则函数f(z)在a解析如a是函数 2020-07-31 …
关于一个概率论的小问题,答得好有追加分二维随机变量服从Z=X+Y的分布,由卷积公式可得,Z的概率密 2020-08-02 …
求教几个高数问题1.求下列函数的一阶偏导数(其中f具有一阶连续偏导数)①u=f(x^2-y^2,e^ 2020-11-01 …