早教吧作业答案频道 -->数学-->
一个高数的困惑为什么满足方程组F(x,y,z)=0G(x,y,z)=0的所有曲面束为F(x,y,z)+aG(x,y,z)=0,怎么保证它包含了所有满足条件的曲面
题目详情
一个高数的困惑
为什么满足方程组F(x,y,z)=0 G(x,y,z)=0的所有曲面束为F(x,y,z)+aG(x,y,z)=0,怎么保证它包含了所有满足条件的曲面
为什么满足方程组F(x,y,z)=0 G(x,y,z)=0的所有曲面束为F(x,y,z)+aG(x,y,z)=0,怎么保证它包含了所有满足条件的曲面
▼优质解答
答案和解析
你的问法是不是有问题啊,你想知道的可能是下面我说的.
这个方法我给别人解答题目时用的,你可以看下.我是从平面的角度去解释至于曲面就有待研究了.
他的题目是:求过直线 2x-y-2z+1=0与x+y+4z-2=0且在y轴和z轴有相同的非零截距的平面方程
该题的直线是两个平面的交线,所以呢我们可以这样来假定过该直线的所有平面,如:2X-Y-2Z+1+a(X+Y+4Z-2)=0,其中a是一个变量,然后根据截距相等就可求出a,然后化简即可.这是我从复习书上看的方法.如果你知道这方法就不用看我的解释了.(如下)
至于为什么可以这样,我的理解是:你看啊,这条直线肯定是垂直于这两个平面的法线,这两平面的法线分别是这两平面方程XYZ前面的常数,那么我们要求的平面也是过这条直线的,它的法线也是与该直线垂直的,则这三个平面的法线是在一个平面内的(因为都垂直与同一条直线).你要知道,记得不知道是什么时候学的定理,在一平面内,两任意不重合的向量可以表示该平面内任意的其他向量.那么上面的待求平面的法线也是如此,而法线向量又正好是平面方程中XYZ前的系数,因此就把所求平面方程设为含一未知量的形式.
这个方法我给别人解答题目时用的,你可以看下.我是从平面的角度去解释至于曲面就有待研究了.
他的题目是:求过直线 2x-y-2z+1=0与x+y+4z-2=0且在y轴和z轴有相同的非零截距的平面方程
该题的直线是两个平面的交线,所以呢我们可以这样来假定过该直线的所有平面,如:2X-Y-2Z+1+a(X+Y+4Z-2)=0,其中a是一个变量,然后根据截距相等就可求出a,然后化简即可.这是我从复习书上看的方法.如果你知道这方法就不用看我的解释了.(如下)
至于为什么可以这样,我的理解是:你看啊,这条直线肯定是垂直于这两个平面的法线,这两平面的法线分别是这两平面方程XYZ前面的常数,那么我们要求的平面也是过这条直线的,它的法线也是与该直线垂直的,则这三个平面的法线是在一个平面内的(因为都垂直与同一条直线).你要知道,记得不知道是什么时候学的定理,在一平面内,两任意不重合的向量可以表示该平面内任意的其他向量.那么上面的待求平面的法线也是如此,而法线向量又正好是平面方程中XYZ前的系数,因此就把所求平面方程设为含一未知量的形式.
看了 一个高数的困惑为什么满足方程...的网友还看了以下:
分解因式:(1)4a2b-6ab2+2ab(2)6(a-b)2-12(a-b)(3)x(x+y)2 2020-04-08 …
先化简,再求值 (1)[(x-y)的平方+(x+y)(x-y)]÷2x 其中X=2010,y=20 2020-05-16 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
设f(x)=ln10x,g(x)=x,h(x)=ex10,则当x充分大时有()A.g(x)<h(x 2020-06-18 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
已知函数f(x)=lnxa+x在x=1处的切线方程为2x-y+b=0.(Ⅰ)求实数a,b的值;(Ⅱ 2020-07-31 …
若函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)的充要条件是?A.存在一个属 2020-08-02 …
求ln[(1+X)/(1-X)]的导数求ln[(1+X)/(1-X)]导数的思路和答案我知道lnx的 2020-10-31 …
我快死了……函数的一般表达式是什么?是不是y=f(x)(x∈A)?f是某个对应关系,那么这个f(x) 2020-11-01 …