早教吧作业答案频道 -->其他-->
右图是一个直三棱柱(以A1B1C1为底面),被一平面所截得的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=900,AA1=4,BB1=2,CC1=3(I)设点O是AB的中点,证明:OC∥平面A1B1C1(II)求AB与平面AA1CC1所
题目详情
右图是一个直三棱柱(以A1B1C1为底面),被一平面所截得的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=900,AA1=4,BB1=2,CC1=3
(I)设点O是AB的中点,证明:OC∥平面A1B1C1
(II)求AB与平面AA1CC1所成角的大小.
(I)设点O是AB的中点,证明:OC∥平面A1B1C1
(II)求AB与平面AA1CC1所成角的大小.
▼优质解答
答案和解析
(Ⅰ)证明:作OD∥AA1交A1B1于D,连C1D.
则OD∥AA1交A1B1于D,连C1D因为O是AB的中点,
所以OD=
(AA1+BB1)=3=CC1.
则ODC1C是平行四边形,因此有OC∥C1D,C1D⊂平面C1B1A1,且OC⊄平面C1B1A1
则OC∥面A1B1C1. ….(7分)
(Ⅱ)如图,过B作截面BA2C2∥面A1B1C1,分别交AA1,CC1于A2,C2,
作BH⊥A2C2于H,
因为平面A2BC2⊥平面AA1C1C,则BH⊥面AA1C1C.
连接AH,则∠BAH就是AB与面AA1C1C所成的角.
因为BH=
,AB=
,所以sin∠BAH=
=
.AB与面AA1C1C所成的角为∠BAH=arcsin
.….(14分)
解法二:
(Ⅰ)证明:如图,以B1为原点建立空间直角坐标系,则A(0,1,4),B(0,0,2),C(1,0,3),因为O是AB的中点,所以O(0,
,3),
=(1,−
,0),
易知,
则OD∥AA1交A1B1于D,连C1D因为O是AB的中点,
所以OD=
1 |
2 |
则ODC1C是平行四边形,因此有OC∥C1D,C1D⊂平面C1B1A1,且OC⊄平面C1B1A1
则OC∥面A1B1C1. ….(7分)
(Ⅱ)如图,过B作截面BA2C2∥面A1B1C1,分别交AA1,CC1于A2,C2,
作BH⊥A2C2于H,
因为平面A2BC2⊥平面AA1C1C,则BH⊥面AA1C1C.
连接AH,则∠BAH就是AB与面AA1C1C所成的角.
因为BH=
| ||
2 |
5 |
BH |
AB |
| ||
10 |
| ||
10 |
解法二:
(Ⅰ)证明:如图,以B1为原点建立空间直角坐标系,则A(0,1,4),B(0,0,2),C(1,0,3),因为O是AB的中点,所以O(0,
1 |
2 |
OC |
1 |
2 |
易知,
作业帮用户
2017-09-18
|
看了 右图是一个直三棱柱(以A1B...的网友还看了以下:
先能明白(1)小题的解答过程,再解答第(2)小题,(1)已知a²-3a+1=0,求a²+1/a²的值 2020-03-31 …
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
数集A满足条件:若a∈A则(1+a)/(1—a)∈A(a≠1).若1/3∈A,求集合中的其他元素. 2020-04-06 …
一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC,已知A1B1=B1C1 2020-04-08 …
如图,正三棱柱ABC-A1B1C1,(底面是正三角形,侧棱垂直于地面),D是BC的中点,AB=a( 2020-04-27 …
a-1/(a+1)2-4,1-a/2-4a+2a注:(a+1)2是(a+1)的平方,不会打上去的. 2020-05-13 …
1.计算:a^m[a^(m+1)-a^m+a^(m-1)]-a^(m-1)[a^(m+1)+a^m 2020-05-14 …
(a+1)(a^2+1)(a^4+1)(a^8+1)(a^16+1)=(a-1)[(a+1)(a^ 2020-05-22 …
已知a/(a^2+1)=1/2,求a^2/(a^4+1)的值由a/(a^2+1)=1/2,知a≠0 2020-06-14 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …