早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数学的十字相乘法咋用,求图片举例和文字说明.

题目详情
数学的十字相乘法咋用,求图片举例和文字说明.
▼优质解答
答案和解析
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.
2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程.
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错.
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单.2、十字相乘法只适用于二次三项式类型的题目.3、十字相乘法比较难学.
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m?+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
因为 1 -2
1 ╳ 6
所以m?+4m-12=(m-2)(m+6)
例2把5x?+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题
因为 1 2
5 ╳ -4
所以5x?+6x-8=(x+2)(5x-4)
例3解方程x?-8x+15=0
分析:把x?-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.
因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x?-5x-25=0
分析:把6x?-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.
因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x?-67xy+18y?分解因式
分析:把14x?-67xy+18y?看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y?可分为y.18y ,2y.9y ,3y.6y
因为 2 -9y
7 ╳ -2y
所以 14x?-67xy+18y?= (2x-9y)(7x-2y)
例6 把10x?-27xy-28y?-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x?-27xy-28y?-x+25y-3
=10x?-(27y+1)x -(28y?-25y+3) 4y -3
7y ╳ -1
=10x?-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y?-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x?-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x?-27xy-28y?-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x?-27xy-28y?用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:- 3ax + 2a?–ab -b?=0
分析:2a?–ab-b?可以用十字相乘法进行因式分解
- 3ax + 2a?–ab -b?=0
- 3ax +(2a?–ab - )=0
- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
看了 数学的十字相乘法咋用,求图片...的网友还看了以下: